Check sibling questions


Transcript

Question 11 Using the method of integration find the area of the region bounded by lines: 2๐‘ฅ + ๐‘ฆ = 4, 3๐‘ฅโ€“2๐‘ฆ=6 and ๐‘ฅโ€“3๐‘ฆ+5=0 Plotting the 3 lines on the graph 2๐‘ฅ + ๐‘ฆ = 4 3๐‘ฅ โ€“ 2๐‘ฆ = 6 ๐‘ฅ โ€“ 3๐‘ฆ + 5 = 0 Find intersecting Points A & B Point A Point A is intersection of lines x โ€“ 3y + 5 = 0 & 2x + y = 4 Now, x โ€“ 3y + 5 = 0 x = 3y โ€“ 5 Putting x = 3y โ€“ 5 in 2x + y = 4 2(3y โ€“ 5) + y = 4 6y โ€“ 10 + y = 4 7y = 14 y = 2 Putting y = 2 in x โ€“ 3y + 5 = 0 x โ€“ 3(2) + 5 = 0 x โ€“ 6 + 5 = 0 x = 1 So, point A (1, 2) Point B Point B is intersection of lines x โ€“ 3y + 5 = 0 & 3x โ€“ 2y = 6 Now, x โ€“ 3y + 5 = 0 x = 3y โ€“ 5 Putting x = 3y โ€“ 5 in 3x โ€“ 2y = 6 3(3y โ€“ 5) โ€“ 2y = 6 9y โ€“ 15 โ€“ 2y = 6 7y = 21 y = 3 Putting y = 3 in x โ€“ 3y + 5 = 0 x โ€“ 3(3) + 5 = 0 x โ€“ 9 + 5 = 0 x = 4 So, point B is (4, 3) Finding area Area Required = Area ABED โ€“ Area ACD โ€“ Area CBE Area ABED Area ABED =โˆซ_1^4โ–’ใ€–๐‘ฆ ๐‘‘๐‘ฅใ€— ๐‘ฆโ†’ Equation of AB ๐‘ฅ โ€“ 3๐‘ฆ+5=0 ๐‘ฅ+5=3๐‘ฆ (๐‘ฅ + 5)/3=๐‘ฆ ๐‘ฆ=(๐‘ฅ + 5)/3 Therefore, Area ABED =โˆซ_1^4โ–’ใ€–((๐‘ฅ+5)/3) ๐‘‘๐‘ฅใ€— =1/3 โˆซ_1^4โ–’ใ€–(๐‘ฅ+5) ๐‘‘๐‘ฅใ€— =1/3 [๐‘ฅ^2/2+5๐‘ฅ]_1^4 =1/3 [4^2/2+5.4โˆ’[1^2/2+5.1]] =1/3 [8+20โˆ’1/2โˆ’5] =1/3 [45/2] =15/2 Area ACD Area ACD =โˆซ_1^2โ–’ใ€–๐‘ฆ ๐‘‘๐‘ฅใ€— ๐‘ฆโ†’ Equation of line AC 2๐‘ฅ+๐‘ฆ=4 ๐‘ฆ=4โˆ’2๐‘ฅ Area ACD =โˆซ_1^2โ–’ใ€–(4โˆ’2๐‘ฅ" " ) ๐‘‘๐‘ฅใ€— =[4๐‘ฅโˆ’(2๐‘ฅ^2)/2]_1^2 =[4๐‘ฅโˆ’๐‘ฅ^2 ]_1^2 =[4.2โˆ’2^2โˆ’[4.1โˆ’1^2 ]] =[8โˆ’4โˆ’4+1] = 1 Area CBE Area CBE =โˆซ_2^4โ–’ใ€–๐‘ฆ ๐‘‘๐‘ฅใ€— ๐‘ฆโ†’ Equation of line BC 3๐‘ฅ+2๐‘ฆ=6 3๐‘ฅโˆ’6=2๐‘ฆ (3๐‘ฅ โˆ’ 6)/2=๐‘ฆ ๐‘ฆ=(3๐‘ฅ โˆ’ 6)/2 Therefore, Area CBE =โˆซ_2^4โ–’ใ€–((3๐‘ฅ โˆ’ 6)/2) ๐‘‘๐‘ฅใ€— =1/2 โˆซ_2^4โ–’ใ€–(3๐‘ฅโˆ’6) ๐‘‘๐‘ฅใ€— =1/2 [(3๐‘ฅ^2)/2โˆ’6๐‘ฅ]_2^4 =1/2 [ใ€–3.4ใ€—^2/2โˆ’6.4โˆ’[ใ€–3.2ใ€—^2/2โˆ’6.2]] =1/2 [24โˆ’24โˆ’6+12] =3 Hence Area Required = Area ABED โ€“ Area ACD โ€“ Area CBE =15/2โˆ’1โˆ’3 =15/2โˆ’4 =(15 โˆ’ 8)/2 =๐Ÿ•/๐Ÿ square units

  1. Chapter 8 Class 12 Application of Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo