Question 3 - Miscellaneous - Chapter 8 Class 12 Application of Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 3 Find the area enclosed between the parabola π¦2=4ππ₯ and the line π¦=ππ₯ Letβs first draw the Figure Here, π¦2 =4ax is a Parabola And, π¦=ππ₯ is a straight line Let A be point of intersection of line and parabola Finding point A Putting y = mx in equation of parabola π¦^2=4ππ₯ (ππ₯)^2=4ππ₯ π^2 π₯^2=4ππ₯ π^2 π₯^2β4ππ₯=0 π₯(π^2 π₯β4π)=0 Therefore, π₯=0 π^2 π₯β4π=0 π^2 π₯=4π π₯=4π/π^2 Putting values of π₯ in π¦=ππ₯ π¦=π Γ0=0 π¦=π Γ4π/π^2 =4π/π So, the intersecting points are O(π , π) and A (ππ/π^π ,ππ/π) Finding Area Area Required = Area OBAD β Area OAD Area OBAD Area OBAD = β«_0^(4π/π^2 )βγπ¦ ππ₯" " γ y β Equation of parabola π¦^2 = 4ax π¦ = Β± β("4" ππ₯) Since OBAD is in 1st quadrant, value of y is positive β΄ y = β("4" ππ₯) Now, Area OBAD =β«_0^(4π/π^2 )βγβ4ππ₯ ππ₯" " γ =β«_0^(4π/π^2 )βγβ4π .βπ₯ ππ₯" " γ =β4π β«_0^(4π/π^2 )βγβπ₯ ππ₯" " γ =2βπ [π₯^(1/2 + 1)/(1/2 + 1)]_0^(4π/π^2 ) =β4π [π₯^(3/2)/(3/2)]_0^(4π/π^2 ) =β4π Γ 2/3 [π₯^(3/2) ]_0^(4π/π^2 ) =(2(2βπ))/3 [(4π/π^2 )^(3/2)β(0)^(3/2) ] =(4βπ)/3 [4π/π^2 β(4π/π^2 )β0] =(4βπ)/3 [4π/π^2 Γ(2βπ)/π] =(32 π .βπ .βπ)/(3π^3 ) =(32 π^2)/(3π^3 ) Area OAD Area OAD = β«1_0^(4π/π^2 )βγπ¦ ππ₯γ y β Equation of line y = mx Therefore, Area OAD = β«1_0^(4π/π^2 )βγ"m" π₯ ππ₯γ = mβ«1_0^(4π/π^2 )βγπ₯ ππ₯γ = π[π₯^2/2]_0^(4π/π^2 ) = π[π₯^2/2]_0^(4π/π^2 ) =π/2 [(4π/π^2 )^2β0^2 ] =π/2 (4π)^2/π^4 =(8π^2)/π^3 Thus, Area Required = Area OBAD β Area OAD = (32 π^2)/(3π^3 ) β (8π^2)/π^3 = ((32 β 24) π^2)/(3π^3 ) = (ππ^π)/γππγ^π
Miscellaneous
Misc 1 (ii) Important
Misc 2 Important
Misc 3 Important
Misc 4 (MCQ)
Misc 5 (MCQ) Important
Question 1
Question 2
Question 3 Important You are here
Question 4
Question 5
Question 6 Important
Question 7
Question 8 Important
Question 9 Important
Question 10
Question 11 Important
Question 12
Question 13 (MCQ)
Question 14 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo