Last updated at Dec. 16, 2024 by Teachoo
Ex 9.3, 17 If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that 1/๐2 = 1/๐2 + 1/๐2 . Equation of line whose intercept on the axes are a & b is ๐ฅ/๐ + ๐ฆ/๐ = 1 The perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by d = |๐ด๐ฅ_1 + ๐ต๐ฆ_1 + ๐ถ|/โ(๐ด^2 + ๐ต^2 ) Now, ๐ฅ/๐ + ๐ฆ/๐ = 1 (1/๐)x + (1/๐)y โ 1 = 0 Comparing with Ax + By + C = 0 Hence, A = 1/๐, B = 1/๐ & C = โ1 Also, Distance from origin (0, 0) to the line ๐ฅ/๐ + ๐ฆ/๐ = 1 is p So, distance d = p & x1 = 0, y1 = 0 Putting values d = |๐ด๐ฅ_1 + ๐ต๐ฆ_1 + ๐ถ|/โ(๐ด^2 + ๐ต^2 ) p = |(0)(1/๐) + (0)(1/๐) โ 1|/โ((1/๐)^2+ (1/๐)^2 ) p = |0 + 0 โ 1|/โ(1/๐2 + 1/๐2) p = (|โ1|)/โ(1/๐2 + 1/๐2) p = 1/โ(1/๐2 + 1/๐2) 1/๐ = โ(1/๐2+1/๐2) Squaring both sides (1/๐)^2 = (โ(1/๐2+1/๐2))^2 ๐/๐๐ = ๐/๐๐ + ๐/๐๐ Hence proved
Ex 9.3
Ex 9.3, 1 (ii) Important
Ex 9.3, 1 (iii)
Ex 9.3, 2 (i)
Ex 9.3, 2 (ii)
Ex 9.3, 2 (iii) Important
Ex 9.3, 3
Ex 9.3, 4 Important
Ex 9.3, 5 (i) Important
Ex 9.3, 5 (ii)
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8 Important
Ex 9.3, 9
Ex 9.3, 10
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13 Important
Ex 9.3, 14
Ex 9.3, 15 Important
Ex 9.3, 16 Important
Ex 9.3, 17 Important You are here
Question 1 (i)
Question 1 (ii)
Question 1 (iii) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo