Ex 9.3, 4 - Chapter 9 Class 11 Straight Lines
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.3, 4 Find the points on the x-axis, whose distances from the line ๐ฅ/3 + ๐ฆ/4 = 1 are 4 units. We need to find point on the x-axis Let any point on x-axis be P(x, 0) Given that perpendicular distance from point P(x, 0) from given line ๐ฅ/3 + ๐ฆ/4 = 1 is 4 Simplifying equation of line ๐ฅ/3 + ๐ฆ/4 = 1 (4๐ฅ + 3๐ฆ )/12 = 1 4x + 3y = 12 4x + 3y โ 12 = 0 We know that Perpendicular distance from point (x, y) to the line Ax + By + C = 0 is d = |๐ด๐ฅ1 + ๐ต๐ฆ1 + ๐|/โ(๐ด^2 + ๐ต^2 ) Given perpendicular distance of point P(x, 0) from line 4x + 3y โ 12 = 0 is 4 Here x1 = x, y1 = 0 & A = 4 , B = 3 , C = โ 12 & d = 4 Putting values 4 = |4(๐ฅ) + 3(0) โ 12|/โ(ใ(4)ใ^2 + ใ(3)ใ^2 ) 4 = |4๐ฅ โ 12|/โ(16 + 9) 4 = |4๐ฅ โ 12|/โ25 4 = |4๐ฅ โ 12|/5 4 ร 5 = |4๐ฅโ12| 20 = |4๐ฅโ12| |4๐ฅโ12| = 20 4x โ 12 = ยฑ 20 Thus, 4x โ 12 = 20 or 4x โ 12 = โ 20 4x โ 12 = 20 4x = 20 + 12 4x = 32 x = 32/4 x = 8 4x โ 12 = โ20 4x = โ20 + 12 4x = โ8 x = (โ8)/4 x = โ2 4x โ 12 = โ20 4x = โ20 + 12 4x = โ8 x = (โ8)/4 x = โ2 Thus, x = 8 or x = โ3 Hence the required points on x-axis are (8, 0) & (โ2, 0)
Ex 9.3
Ex 9.3, 1 (ii) Important
Ex 9.3, 1 (iii)
Ex 9.3, 2 (i)
Ex 9.3, 2 (ii)
Ex 9.3, 2 (iii) Important
Ex 9.3, 3
Ex 9.3, 4 Important You are here
Ex 9.3, 5 (i) Important
Ex 9.3, 5 (ii)
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8 Important
Ex 9.3, 9
Ex 9.3, 10
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13 Important
Ex 9.3, 14
Ex 9.3, 15 Important
Ex 9.3, 16 Important
Ex 9.3, 17 Important
Question 1 (i)
Question 1 (ii)
Question 1 (iii) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo