Last updated at Dec. 16, 2024 by Teachoo
Ex10.3, 3 Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis. x 3 y + 8 = 0 x 3 y + 8 = 0 8 = x + 3 x + 3 = 8 Divide equation by (( 1)2 + ( 3)^2 ) = (1 + 3)= 4 = 2 ( + 3 )/2 = 8/2 ( )/2 + 3/2y = 4 x(( 1)/2) + y ( 3/2) = 4 Normal form of any line is x cos + y sin = p Comparing (1) & (2) p = 4 & cos = 1/2 & sin = 3/2 Now, finding = 180 60 = 120 So, the normal form of line is x cos 120 + y sin 120 = 4 Hence perpendicular distance from origin = p = 4 & angle between perpendicular & the + ve x-axis = = 120
Ex 9.3
Ex 9.3, 1 (ii) Important
Ex 9.3, 1 (iii)
Ex 9.3, 2 (i)
Ex 9.3, 2 (ii)
Ex 9.3, 2 (iii) Important
Ex 9.3, 3
Ex 9.3, 4 Important
Ex 9.3, 5 (i) Important
Ex 9.3, 5 (ii)
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8 Important
Ex 9.3, 9
Ex 9.3, 10
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13 Important
Ex 9.3, 14
Ex 9.3, 15 Important
Ex 9.3, 16 Important
Ex 9.3, 17 Important
Question 1 (i) You are here
Question 1 (ii)
Question 1 (iii) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo