Last updated at Dec. 13, 2024 by Teachoo
Question 1 In figure, the line segment XY is parallel to side AC of ABC and it divides the triangle into two parts of equal areas. Find the ratio / Given: ABC XY is parallel to AC i.e. XY II AC ar( BXY ) = ar(AXYC) To find : / Proof: In ABC & XBY, ABC = XBY ACB = XYB ABC ~ XBY ABC ~ XBY Now, we know that in similar triangles, Ratio of area of triangle is equal to ratio of square of corresponding sides ( )/( )=( / )^2 ( + )/( )=( / )^2 ( + )/( )=( / )^2 (2 )/( )=( / )^2 2=( / )^2 ( / )^2 = 2 / = 2 / 2= XB XB = / 2 Now, we need to find / Since, AX + XB = AB AX + / 2 = AB AX = AB / 2 AX = AB (1 1/ 2) / = ( 2 1)/ 2 Hence , / =( 2 1)/ 2
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo