Check sibling questions


Transcript

Ex 6.3, 16 If AD and PM are medians of triangles ABC and PQR, respectively where ABC PQR, prove that / = / Given: ABC and PQR AD is the median of ABC ,PM is the median of PQR & ABC PQR. To Prove:- / = / Proof: Since AD is the median BD = CD = 1/2 BC Similarly, PM is the median QM = RM = 1/2 QR Now, ABC PQR. / = / = / So, / = / / =2 /2 / = / Also, since ABC PQR. B = Q Now, In ABD & PQM = / = / Hence by SAS similarly ABD PQM Since corresponding sides of similar triangles are proportional / = / Hence proved

  1. Chapter 6 Class 10 Triangles
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo