Check sibling questions

If 𝑥 = 𝑎 𝑠𝑒𝑐 𝜃 , 𝑦 = 𝑏  𝑡𝑎𝑛𝜃  find  d 2 y / dx 2    𝑎𝑡 𝑥 = π/6

 


Transcript

Question 31 (Choice 2) If 𝑥 = 𝑎 𝑠𝑒𝑐 𝜃 , 𝑦 = 𝑏 𝑡𝑎𝑛 𝜃 𝑓𝑖𝑛𝑑 (𝑑^2 𝑦)/(𝑑𝑥^2 ) 𝑎𝑡 𝑥 = 𝜋/6 Given 𝑥=𝑎 sec ⁡𝜃, 𝑦=𝑏 tan⁡𝜃 𝑑𝑦/𝑑𝑥 = 𝑑𝑦/𝑑𝑥 × 𝑑𝜃/𝑑𝜃 𝑑𝑦/𝑑𝑥 = 𝑑𝑦/𝑑𝜃 × 𝑑𝜃/𝑑𝑥 𝑑𝑦/𝑑𝑥 = (𝑑𝑦/𝑑𝜃)/(𝑑𝑥/𝑑𝜃) Calculating 𝒅𝒚/𝒅𝜽 𝑦 = 𝑏 tan⁡𝜃 𝑑𝑦/𝑑𝜃 = 𝑑(𝑏 tan⁡𝜃 )/𝑑𝜃 𝑑𝑦/𝑑𝜃 = 𝑏 𝑑(tan⁡𝜃 )/𝑑𝜃 𝑑𝑦/𝑑𝜃 = 𝑏 .sec^2⁡𝜃 Calculating 𝒅𝒙/𝒅𝜽 𝑥=𝑎 sec ⁡𝜃 𝑑𝑥/𝑑𝜃 = 𝑑(𝑎 sec ⁡𝜃)/𝑑𝜃 𝑑𝑥/𝑑𝜃 = 𝑎 𝑑(sec ⁡𝜃)/𝑑𝜃 𝑑𝑥/𝑑𝜃 = 𝑎 (sec⁡𝜃.tan⁡𝜃 ) Therefore 𝑑𝑦/𝑑𝑥 = (𝑑𝑦/𝑑𝜃)/(𝑑𝑥/𝑑𝜃) 𝑑𝑦/𝑑𝑥 = (𝑏 .〖 sec〗^2⁡𝜃)/(𝑎 (sec⁡𝜃.tan⁡𝜃 ) ) 𝑑𝑦/𝑑𝑥 = (𝑏 sec⁡𝜃)/(𝑎 tan⁡𝜃 ) 𝑑𝑦/𝑑𝑥 = (𝑏 . 1/cos⁡𝜃 )/(𝑎 (sin⁡𝜃/cos⁡𝜃 ) ) 𝑑𝑦/𝑑𝑥 = 𝑏 × 1/cos⁡𝜃 × cos⁡𝜃/〖a sin〗⁡𝜃 𝑑𝑦/𝑑𝑥 = 𝑏/𝑎 (1/sin⁡𝜃 ) 𝒅𝒚/𝒅𝒙 = 𝒃/𝒂 𝒄𝒐𝒔𝒆𝒄 𝜽 Now, (𝒅^𝟐 𝒚)/(𝒅𝒙^𝟐 ) = 𝒃/𝒂 (𝐝(𝒄𝒐𝒔𝒆𝒄 𝜽))/𝒅𝒙 (𝑑^2 𝑦)/(𝑑𝑥^2 ) = 𝑏/𝑎 (d(𝑐𝑜𝑠𝑒𝑐 𝜃))/𝑑θ ×𝑑θ/𝑑𝑥 (𝑑^2 𝑦)/(𝑑𝑥^2 ) = 𝑏/𝑎 (d(𝑐𝑜𝑠𝑒𝑐 𝜃))/𝑑θ ×𝟏/(𝒅𝒙/𝒅𝜽) (𝑑^2 𝑦)/(𝑑𝑥^2 ) = 𝑏/𝑎 (−𝑐𝑜𝑠𝑒𝑐 θ cot⁡θ) ×𝟏/(𝒂 𝒔𝒆𝒄 θ 𝒕𝒂𝒏 θ) (𝑑^2 𝑦)/(𝑑𝑥^2 ) = (−𝑏)/𝑎^2 1/sin⁡〖θ 〗 cot⁡θ × 𝒄𝒐𝒔 θ 𝒄𝒐𝒕 θ (𝒅^𝟐 𝒚)/(𝒅𝒙^𝟐 ) = (−𝒃)/𝒂^𝟐 〖𝒄𝒐𝒕〗^𝟑⁡𝜽 We need to find (𝑑^2 𝑦)/(𝑑𝑥^2 ) 𝑎𝑡 𝑥 = 𝜋/6 Putting 𝑥 = 𝝅/𝟔 (𝑑^2 𝑦)/(𝑑𝑥^2 ) = (−𝑏)/𝑎^2 〖𝑐𝑜𝑡〗^3⁡〖𝜋/6〗 (𝑑^2 𝑦)/(𝑑𝑥^2 ) = (−𝑏)/𝑎^2 (√3)^3 (𝑑^2 𝑦)/(𝑑𝑥^2 ) = (−𝑏)/𝑎^2 3√3 (𝒅^𝟐 𝒚)/(𝒅𝒙^𝟐 ) = (−𝟑√𝟑 𝒃)/𝒂^𝟐

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo