Find the particular solution of the differential equation :

ye y dx = (y 3 + 2xe y ) dy,  y(0) = 1

OR

Show that (x − y)dy = (x + 2y)dx is a homogenous differential equation. Also, find the general solution of the given differential equation.

Download Sample Paper of Class 12 here  https://www.teachoo.com/cbse/sample-papers/

19-1.jpg

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 2
Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 3
Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 4
Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 5

Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 6 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 7 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 8 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 9 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 10 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 11 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 12 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 13 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 14 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 15 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 16 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 17 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 18 Question 19 - CBSE Class 12 Sample Paper for 2018 Boards - Part 19


Transcript

Question 19 Find the particular solution of the differential equation : yey dx = (y3 + 2xey) dy, y(0) = 1 Given equation yey dx = (y3 + 2xey) dy We try to put in form 𝑑𝑦/𝑑𝑥 + Py = Q or 𝑑𝑥/𝑑𝑦 + P1 x = Q1, yey dx = (y3 + 2xey) dy (𝑦𝑒^𝑦)/((𝑦3 + 2𝑥𝑒^𝑦)) = 𝑑𝑦/𝑑𝑥 𝑑𝑦/𝑑𝑥 = (𝑦𝑒^𝑦)/((𝑦3 + 2𝑥𝑒^𝑦)) This is not of the form 𝑑𝑦/𝑑𝑥 + Py = Q ∴ We find 𝑑𝑥/𝑑𝑦 𝑑𝑥/𝑑𝑦 = ((𝑦^3 + 2𝑥𝑒^𝑦))/(𝑦𝑒^𝑦 ) 𝑑𝑥/𝑑𝑦 = 𝑦^3/(𝑦𝑒^𝑦 )+(2𝑥𝑒^𝑦)/(𝑦𝑒^𝑦 ) 𝑑𝑥/𝑑𝑦 = 𝑦^2/𝑒^𝑦 +2𝑥/𝑦 𝑑𝑥/𝑑𝑦−2𝑥/𝑦 = 𝑦^2/𝑒^𝑦 𝑑𝑥/𝑑𝑦+((−2)/𝑦)𝑥 = 𝑦^2/𝑒^𝑦 Comparing with 𝑑𝑥/𝑑𝑦 + P1 x = Q1 Where P1 = (−2)/𝑦 & Q1 = 𝑦^2/𝑒^𝑦 Find Integrating factor, IF = 𝑒^∫1▒〖𝑃1 𝑑𝑦〗 = 𝑒^∫1▒(−2𝑑𝑦)/𝑦 = 𝑒^(−2∫1▒𝑑𝑦/𝑦) = 𝑒^(−2 log⁡𝑦 ) Using a log b = log ba = 𝑒^(〖log⁡𝑦〗^(−2) ) = 𝑦^(−2) = 1/𝑦^2 Solution is 𝑥 (IF) = ∫1▒〖(𝑄1×𝐼𝐹)𝑑𝑦+𝑐〗 𝑥 × 1/𝑦^2 = ∫1▒〖𝑦^2/𝑒^𝑦 ×1/𝑦^2 𝑑𝑦+𝑐〗 𝑥/𝑦^2 = ∫1▒〖1/𝑒^𝑦 𝑑𝑦+𝑐〗 𝑥/𝑦^2 = ∫1▒〖𝑒^(−𝑦) 𝑑𝑦+𝑐〗 𝑥/𝑦^2 = −1 ×𝑒^(−𝑦)+𝑐 𝑥/𝑦^2 = 〖−𝑒〗^(−𝑦)+𝑐 𝑥 = 〖−𝑦^2 𝑒〗^(−𝑦)+𝑐𝑦^2 We need to find particular solution, Putting x = 0, y = 1 0 = 〖−1^2 𝑒〗^(−1)+𝑐〖(1)〗^2 0 = 〖−𝑒〗^(−1)+𝑐 𝑒^(−1) =𝑐 c=𝑒^(−1) c=1/𝑒 Putting value of c in (2) 𝑥 = 〖−𝑦^2 𝑒〗^(−𝑦)+𝑐𝑦^2 𝑥 = 〖−𝑦^2 𝑒〗^(−𝑦)+(1/𝑒) 𝑦^2 𝒙 = 〖−𝒚^𝟐 𝒆〗^(−𝒚)+𝒚^𝟐/𝒆 Question 19 Show that (x − y)dy = (x + 2y)dx is a homogenous differential equation. Also, find the general solution of the given differential equation. Theory To prove homogenous Step 1: Find 𝑑𝑦/𝑑𝑥 Step 2: Put F(𝑥 , 𝑦)=𝑑𝑦/𝑑𝑥 & Find F(𝜆𝑥 ,𝜆𝑦) Step 3: Then solve using by putting 𝑦=𝑣𝑥 Finding 𝑑𝑦/𝑑𝑥 (x − y)dy = (x + 2y)dx 𝑑𝑦/𝑑𝑥=((𝑥 + 2𝑦)/(𝑥 − 𝑦)) Now, Putting F(𝑥 , 𝑦)=𝑑𝑦/𝑑𝑥 & Find F(𝜆𝑥 ,𝜆𝑦) Let F(𝑥 , 𝑦)=((𝑥 + 2𝑦)/(𝑥 − 𝑦)) Finding F(𝝀𝒙 ,𝝀𝒚) F(𝜆𝑥 ,𝜆𝑦)=(𝜆𝑥 + 2(𝜆𝑦))/(𝜆𝑥 −𝜆𝑦) =𝜆(𝑥 + 2𝑦)/(𝜆 (𝑥 − 𝑦) ) =((𝑥 + 2𝑦))/(𝑥 − 𝑦) = F(𝑥 , 𝑦) Thus , F(𝜆𝑥 ,𝜆𝑦)="F" (𝑥 , 𝑦)" " =𝜆°" F" (𝑥 , 𝑦)" " Thus , "F" (𝑥 , 𝑦)" is Homogeneous function of degree zero" Therefore, the given Differential Equation is Homogeneous differential Equation Step 3: Solving 𝑑𝑦/𝑑𝑥 by Putting 𝑦=𝑣𝑥 𝑑𝑦/𝑑𝑥=((𝑥 + 2𝑦)/(𝑥 − 𝑦)) Let 𝑦=𝑣𝑥 So , 𝑑𝑦/𝑑𝑥=𝑑(𝑣𝑥)/𝑑𝑥 𝑑𝑦/𝑑𝑥=𝑑𝑣/𝑑𝑥 . 𝑥+𝑣 𝑑𝑥/𝑑𝑥 𝑑𝑦/𝑑𝑥=𝑑𝑣/𝑑𝑥 𝑥+𝑣 Putting 𝑑𝑦/𝑑𝑥 𝑎nd 𝑦/𝑥 𝑖𝑛 (𝑖) 𝑖.𝑒. 𝑑𝑦/𝑑𝑥=(𝑥 + 2𝑦)/(𝑥 − 𝑦) 𝑑𝑣/𝑑𝑥 𝑥+𝑣= (𝑥 + 2 𝑣𝑥)/(𝑥 − 𝑣𝑥) 𝑑𝑣/𝑑𝑥 𝑥+𝑣= 𝑥(1 + 2𝑣)/𝑥(1 − 𝑣) 𝑑𝑣/𝑑𝑥 𝑥+𝑣= (1 + 2𝑣)/(1− 𝑣) 𝑑𝑣/𝑑𝑥 𝑥= (1 + 2𝑣)/(1− 𝑣)−𝑣 𝑑𝑣/𝑑𝑥 . 𝑥= (1 + 2𝑣 − 𝑣 (1− 𝑣))/(1 −𝑣) 𝑑𝑣/𝑑𝑥 . 𝑥= (1 + 2𝑣 − 𝑣 +〖 𝑣〗^2)/(1 − 𝑣) 𝑑𝑣/𝑑𝑥 . 𝑥= (〖 𝑣〗^2 + 𝑣 + 1)/(1 − 𝑣) 𝑑𝑣/𝑑𝑥 𝑥=−((〖 𝑣〗^2 + 𝑣 + 1)/(𝑣 − 1)) 𝑑𝑣((𝑣−1)/(𝑣^(2 )+ 𝑣 + 1))=(− 𝑑𝑥)/𝑥 Integrating Both Sides ∫1▒〖(𝑣 −1)/(𝑣^2 + 𝑣 + 1) 𝑑𝑣=∫1▒(−𝑑𝑥)/𝑥〗 ∫1▒〖(𝑣 −1)/(𝑣^2 + 𝑣 + 1) 𝑑𝑣=−∫1▒𝑑𝑥/𝑥〗 ∫1▒〖((𝑣 −1) 𝑑𝑣)/(𝑣^2 + 𝑣 + 1) 𝑑𝑣〗=−log⁡〖|𝑥|〗 + 𝑐 We can write 𝑣^2+𝑣+1 = 𝑣^2 + 1/2 . 2v + (1/2)^2+1−(1/2)^2 =(𝑣+1/2)^2 + 1 – 1/4 =(𝑣+1/2)^2+3/4 Putting 𝑣^2+𝑣+1=(𝑣+1/2)^2+3/4 & 𝑣−1=𝑣+𝟏/𝟐−𝟏/𝟐−1 =(𝑣+1/2)−3/2 ∫1▒((𝑣 + 1/2) − 3/2)/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣=−log⁡〖𝑥+𝑐〗 ∫1▒(𝑣 + 1/2)/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣−3/2 ∫1▒1/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣=−log⁡〖𝑥+𝑐〗 Thus, I = I1 – (3 )/2 I2 Solving 𝐼1 𝐼1=∫1▒((𝑣 + 1/2))/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣 Put (𝑣+ 1/2)^2+ 3/4 =𝑡 Diff. w.r.t. 𝑣 𝑑((𝑣 + 1/2)^2+ 3/4)/𝑑𝑣=𝑑𝑡/𝑑𝑣 2(𝑣+1/2)=𝑑𝑡/𝑑𝑣 𝑑𝑣=𝑑𝑡/2(𝑣 + 1/2) Putting value of v & dv in I1 𝐼1=∫1▒((𝑣 + 1/2))/𝑡 ×𝑑𝑡/2(𝑣 + 1/2) =1/2 ∫1▒𝑑𝑡/𝑡 =1/2 log⁡ |𝑡| Putting 𝑡=(𝑣+ 1/2)^2+3/4 =1/2 𝑙𝑜𝑔|(𝑣+ 1/2)^2+3/4| =1/2 𝑙𝑜𝑔|𝑣^2+2𝑣 × 1/2 + 1/4 + 3/4| I1 =1/2 log⁡〖 |𝑣^2+𝑣+1|〗 Solving 𝑰𝟐 𝐼2=∫1▒𝑑𝑣/((𝑣 + 1/2)^2+3/4) =∫1▒𝑑𝑣/((𝑣 + 1/2)^2+(√3/2)^2 ) Put 𝑡=𝑣+1/2 Diff. w.r.t. 𝑣 𝑑𝑡/𝑑𝑣=1 ⇒ 𝑑𝑡=𝑑𝑣 = ∫1▒𝑑𝑡/(𝑡^2 + 〖 (√3/2)〗^2 ) =1/(√3/2) tan^(−1)⁡〖𝑡/(√3/2)〗 =2/√3 tan^(−1)⁡〖2(𝑣 + 1/2)/√3〗 =2/√3 tan^(−1)⁡((2𝑣 + 1)/√3) Hence I = 𝐼1−3/2 𝐼2 I =1/2 log⁡ |𝑣^2+𝑣+1|−3/2 ×2/√3 tan^(−1)⁡((2𝑣 +1)/√3) I =1/2 log⁡ |𝑣^2+𝑣+1|−√3 tan^(−1)⁡((2𝑣 +1)/√3) Replacing v by (𝑦 )/𝑥 I =1/2 𝑙𝑜𝑔|(𝑦/𝑥)^2+𝑦/𝑥+1|−√3 tan^(−1)⁡((2𝑦/𝑥 + 1)/√3) I =1/2 𝑙𝑜𝑔|𝑦^2/𝑥^2 +𝑦/𝑥+1|−√3 tan^(−1)⁡((2𝑦 + 𝑥)/(√3 𝑥)) Putting Value of I in (2) 1/2 𝑙𝑜𝑔|𝑦^2/𝑥^2 +𝑦/𝑥+1|−√3 tan^(−1)⁡((2𝑦 + 𝑥)/(√3 𝑥))=−𝑙𝑜𝑔|𝑥|+𝑐 1/2 𝑙𝑜𝑔|𝑦^2/𝑥^2 +𝑦/𝑥+1|+𝑙𝑜𝑔|𝑥|=√3 tan^(−1)⁡((2𝑦 + 𝑥)/(√3 𝑥))+𝑐 Multiplying Both Sides By 2 𝑙𝑜𝑔|𝑦^2/𝑥^2 +𝑦/𝑥+1|+2 𝑙𝑜𝑔|𝑥|=2 √3 tan^(−1)⁡((2𝑦 + 𝑥)/(√3 𝑥))+2𝑐 𝑙𝑜𝑔|𝑦^2/𝑥^2 +𝑦/𝑥+1|+𝑙𝑜𝑔|𝑥|^2=2√3 tan^(−1)⁡((2𝑦 + 𝑥)/(√3 𝑥))+2𝑐 Put 2𝑐=𝑐 𝑙𝑜𝑔[|𝑦^2/𝑥^2 +𝑦/𝑥+1| × |𝑥^2 |]=2√3 tan^(−1)⁡((2𝑦 + 𝑥)/(√3 𝑥))+𝑐 𝑙𝑜𝑔|〖𝑥^2 𝑦〗^2/𝑥^2 +(𝑥^2 𝑦)/𝑥+𝑥^2 |=2√3 tan^(−1)⁡((𝑥 + 2𝑦)/(√3 𝑥))+𝑐 𝒍𝒐𝒈|𝒙^𝟐+𝒙𝒚+𝒚^𝟐 |=𝟐√𝟑 〖𝒕𝒂𝒏〗^(−𝟏)⁡((𝒙 + 𝟐𝒚)/(√𝟑 𝒙))+𝒄 Is the General Solution of the Differential Equation given

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.