Check sibling questions

Theorem 10.6 - Class 9 - Equal chords are equidistant from the centre

Theorem 10.6 - Chapter 10 Class 9 Circles - Part 2

This video is only available for Teachoo black users

Solve all your doubts with Teachoo Black (new monthly pack available now!)


Transcript

Theorem 10.6 Equal chords of a circle (or of congruent circles) are equidistant from the centre (or centres). Given : A circle with center at O. AB and CD are two equal chords of circle i.e. AB = CD & OX and OY are perpendiculars to AB & CD respectively. To Prove : OX = OY Proof : Since OX ⊥ AB Perpendicular from the center to the chord, bisects the chord AX = BX = (𝐴𝐵 )/2 Since OY ⊥ CD Perpendicular from the center to the chord, bisects the chord CY = DY = (𝐶𝐷 )/2 Now, given that AB = CD 𝐴𝐵/2 = 𝐶𝐷/2 AX = CY In ∆ AOX and ∆COY ∠OXA = ∠OYC OA = OC AX = CY ∴ ∆AOX ≅ ∆COY OX = OY Hence, Proved.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.