Question 10 - Forming Differential equations - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Forming Differential equations
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 4 Deleted for CBSE Board 2025 Exams
Question 5 Important Deleted for CBSE Board 2025 Exams
Question 6 Deleted for CBSE Board 2025 Exams
Question 7 Important Deleted for CBSE Board 2025 Exams
Question 8 Deleted for CBSE Board 2025 Exams
Question 9 Deleted for CBSE Board 2025 Exams
Question 10 Important Deleted for CBSE Board 2025 Exams You are here
Question 11 (MCQ) Deleted for CBSE Board 2025 Exams
Question 12 (MCQ) Important Deleted for CBSE Board 2025 Exams
Forming Differential equations
Last updated at April 16, 2024 by Teachoo
Question 10 Form the differential equation of the family of circle having a center on y-axis and radius 3 units. General equation of circle is :- (𝑥−𝑎)^2+(𝑦−𝑏)^2=𝑟^2 Given center is on y-axis ∴ Center = (0, b) And, Radius = 3 Hence, our equation becomes (𝑥−0)^2+(𝑦−𝑏)^2=(3)^2 𝑥^2+(𝑦−𝑏)^2=9 Differentiating Both Sides w.r.t. 𝑥 2𝑥+2(𝑦−𝑏)[𝑑𝑦/𝑑𝑥−0]=0 2𝑥+2(𝑦−𝑏)𝑦′=0 2[𝑥+(𝑦−𝑏)𝑦′]=0 𝑥+(𝑦−𝑏) 𝑦^′=0 (𝑦−𝑏)𝑦′=−𝑥 (𝑦−𝑏)= (−𝑥)/𝑦^′ Putting the value of (𝑦−𝑏) in equation (1) x2 + (y − b)2 = 9 𝑥^2+[(−𝑥)/𝑦^′ ]^2=9 𝑥^2+𝑥^2/〖𝑦^′〗^2 =9 (𝑥^2 〖𝑦^′〗^2+ 𝑥^2)/〖𝑦^′〗^2 =9 𝑥^2 〖𝑦^′〗^2+𝑥^2=9〖𝑦^′〗^2 𝑥^2 〖𝑦^′〗^2−9〖𝑦^′〗^2+𝑥^2=0 〖𝑦^′〗^2 (𝑥^2−9)+𝑥^2=0 ∴ (𝒙^𝟐−𝟗) 〖𝒚^′〗^𝟐+𝒙^𝟐=𝟎