


Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 9.3
Ex 9.3, 2 Deleted for CBSE Board 2023 Exams
Ex 9.3, 3 Important Deleted for CBSE Board 2023 Exams
Ex 9.3, 4 Deleted for CBSE Board 2023 Exams You are here
Ex 9.3, 5 Important Deleted for CBSE Board 2023 Exams
Ex 9.3, 6 Deleted for CBSE Board 2023 Exams
Ex 9.3, 7 Important Deleted for CBSE Board 2023 Exams
Ex 9.3, 8 Deleted for CBSE Board 2023 Exams
Ex 9.3, 9 Deleted for CBSE Board 2023 Exams
Ex 9.3, 10 Important Deleted for CBSE Board 2023 Exams
Ex 9.3, 11 (MCQ) Deleted for CBSE Board 2023 Exams
Ex 9.3, 12 (MCQ) Important Deleted for CBSE Board 2023 Exams
Last updated at March 16, 2023 by Teachoo
Ex 9.3, 4 Form a differential equation representing the given family of curves by eliminating arbitrary constants 𝑎 and 𝑏. 𝑦=𝑒^2𝑥 (𝑎+𝑏𝑥) The Number Of Times We Differentiate Is Equal To Number Of Constants 𝑦=𝑒^2𝑥 (𝑎+𝑏𝑥) ∴ Differentiating Both Sides w.r.t. 𝑥 𝑦^′=𝑑/𝑑𝑥 [𝑒^2𝑥 [𝑎+𝑏𝑥]] 𝑦^′=𝑑[𝑒^2𝑥 ]/𝑑𝑥.[𝑎+𝑏𝑥]+𝑒^(2𝑥 ) 𝑑[𝑎 + 𝑏𝑥]/𝑑𝑥 𝑦^′=〖2𝑒〗^2𝑥 [𝑎+𝑏𝑥]+𝑒^2𝑥.𝑏 𝑦^′=𝑒^2𝑥 [2𝑎+2𝑏𝑥+𝑏] Again differentiating w.r.t.x 𝑦^′=𝑑/𝑑𝑥 (𝑒^2𝑥 [2𝑎+2𝑏𝑥+𝑏]) y” = (𝑑 (𝑒^2𝑥))/𝑑𝑥 [2𝑎+2𝑏𝑥+𝑏]+𝑒^2𝑥 (𝑑 [2𝑎+2𝑏𝑥+𝑏])/𝑑𝑥 y” = 2𝑒^2𝑥 [2𝑎+2𝑏𝑥+𝑏]+𝑒^2𝑥×2𝑏 Putting y’=𝑒^2𝑥 [2𝑎+2𝑏𝑥+𝑏] y” = 2y’ + 𝑒^2𝑥×2𝑏 y” = 2y’ + 2𝑒^2𝑥 𝑏 y” − 2y’ = 2𝑒^2𝑥 𝑏 Also, y’ − 2y = 𝑒^2𝑥 [2𝑎+2𝑏𝑥 +𝑏]−2𝑒^2𝑥 (𝑎+𝑏𝑥) y’ − 2y = 2a𝑒^2𝑥+2𝑏𝑥 𝑒^2𝑥+𝑒^2𝑥 𝑏−2𝑎〖 𝑒〗^2𝑥−2𝑏𝑥 𝑒^2𝑥 y’ − 2y = (2𝑎〖 𝑒〗^2𝑥−2𝑎〖 𝑒〗^2𝑥 )+(2𝑏𝑥 𝑒^2𝑥−2𝑏𝑥 𝑒^2𝑥 )+𝑒^2𝑥 𝑏 y’ − 2y = 0 + 0 + 𝑒^2𝑥 𝑏 y’ − 2y = 𝑒^2𝑥 𝑏 Now ((1))/((2)) , (𝑦" − 2𝑦)/(𝑦^(′ ) − 2𝑦)=(2𝑒^2𝑥 𝑏)/(𝑒^2𝑥 𝑏) (𝑦^′′ − 2𝑦^′)/(𝑦^′−2𝑦)= 2 y” − 2y’ = 2(y’ − 2y) y” − 2y’ = 2y’ − 4y y” − 2y’ − 2y’ + 4y = 0 y” − 4y’ + 4y = 0 (As 𝑦=𝑒^2𝑥 (𝑎+𝑏𝑥) ) Again differentiating w.r.t.x y” =𝑑/𝑑𝑥 (𝑒^2𝑥 [2𝑎+2𝑏𝑥+𝑏]) y” = (𝑑 (𝑒^2𝑥))/𝑑𝑥 [2𝑎+2𝑏𝑥+𝑏]+𝑒^2𝑥 (𝑑 [2𝑎+2𝑏𝑥+𝑏])/𝑑𝑥 y” = 2𝑒^2𝑥 [2𝑎+2𝑏𝑥+𝑏]+𝑒^2𝑥×2𝑏 Putting y’=𝑒^2𝑥 [2𝑎+2𝑏𝑥+𝑏] y” = 2y’ + 𝑒^2𝑥×2𝑏 y” = 2y’ + 2𝑒^2𝑥 𝑏 y” − 2y’ = 2𝑒^2𝑥 𝑏 …(1) Differentiating again w.r.t x 𝑦^′′−2𝑦^′=𝑑(𝑒^2𝑥.𝑏)/𝑑𝑥 𝑦^′′−2𝑦^′=2𝑒^2𝑥 𝑏 Dividing (1) and (2) i.e. ((2))/((1)) , (𝑦" − 2𝑦)/(𝑦^(′ ) − 2𝑦)=(2𝑒^2𝑥 𝑏)/(𝑒^2𝑥 𝑏) (𝑦^′′ − 2𝑦^′)/(𝑦^′−2𝑦)= 2 y” − 2y’ = 2(y’ − 2y) …(2) y” − 2y’ = 2y’ − 4y y” − 2y’ − 2y’ + 4y = 0 y” − 4y’ + 4y = 0 is the required equation