Slide22.JPG

Slide23.JPG
Slide24.JPG

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

Transcript

Ex 9.3, 9 Form the differential equation of the family of hyperbolas having foci on ๐‘ฅโˆ’๐‘Ž๐‘ฅ๐‘–๐‘  and center at origin. Equation of hyperbola having foci on x-axis & center at origin (0, 0) is ๐‘ฅ^2/๐‘Ž^2 โˆ’๐‘ฆ^2/๐‘^2 =1 โˆด Differentiating Both Sides w.r.t. ๐‘ฅ ๐‘‘/๐‘‘๐‘ฅ [๐‘ฅ^2/๐‘Ž^2 โˆ’๐‘ฆ^2/๐‘^2 ]=๐‘‘(1)/๐‘‘๐‘ฅ 1/๐‘Ž^2 [2๐‘ฅ]โˆ’1/๐‘^2 [2๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ]=0 2๐‘ฆ/๐‘^2 . ๐‘ฆโ€ฒ=2๐‘ฅ/๐‘Ž^2 Since it has two variables, we will differentiate twice ๐‘ฆ/๐‘^2 ๐‘ฆโ€ฒ=๐‘ฅ/๐‘Ž^2 (๐‘ฆ/๐‘ฅ)๐‘ฆโ€ฒ=๐‘^2/๐‘Ž^2 (๐‘ฆ๐‘ฆ^โ€ฒ)/๐‘ฅ = ๐‘^2/๐‘Ž^2 Again differentiating both sides w.r.t. x ((๐‘ฆ๐‘ฆ^โ€ฒ )^โ€ฒ ๐‘ฅ โˆ’ (๐‘‘๐‘ฅ/๐‘‘๐‘ฅ)(๐‘ฆ๐‘ฆ^โ€ฒ ))/๐‘ฅ^2 =0 (๐‘ฆ๐‘ฆ^โ€ฒ )^โ€ฒ ๐‘ฅ โˆ’ (1)(๐‘ฆ๐‘ฆ^โ€ฒ )=๐ŸŽร—๐’™^๐Ÿ (๐‘ฆ๐‘ฆ^โ€ฒ )^โ€ฒ ๐‘ฅ โˆ’๐‘ฆ๐‘ฆ^โ€ฒ=๐ŸŽ (๐’š๐’š^โ€ฒ )^โ€ฒ ๐‘ฅ โˆ’๐‘ฆ๐‘ฆ^โ€ฒ=0 (Using Quotient rule and Diff. of constant is 0) (๐’š^โ€ฒ ๐’š^โ€ฒ+๐’š๐’šโ€ฒโ€ฒ)๐‘ฅ โˆ’๐‘ฆ๐‘ฆ^โ€ฒ=0 (ใ€–๐‘ฆ^โ€ฒใ€—^2+๐‘ฆ๐‘ฆโ€ฒโ€ฒ)๐‘ฅ โˆ’๐‘ฆ๐‘ฆ^โ€ฒ=0 ๐‘ฅใ€–๐‘ฆ^โ€ฒใ€—^2+๐‘ฅ๐‘ฆ๐‘ฆ^โ€ฒโ€ฒโˆ’๐‘ฆ๐‘ฆ^โ€ฒ=0 ๐’™๐’š๐’š^โ€ฒโ€ฒ+๐’™ใ€–๐’š^โ€ฒใ€—^๐Ÿโˆ’๐’š๐’š^โ€ฒ=๐ŸŽ (Using Product rule)

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.