
Get live Maths 1-on-1 Classs - Class 6 to 12
Miscellaneous
Misc 1 (ii)
Misc 2 (i) Important
Misc 2 (ii)
Misc 3
Misc 4 Deleted for CBSE Board 2023 Exams
Misc 5 Important Deleted for CBSE Board 2023 Exams
Misc 6 Important Deleted for CBSE Board 2023 Exams
Misc 7 Important
Misc 8 Important
Misc 9 Deleted for CBSE Board 2023 Exams
Misc 10 Important
Misc 11 Important
Misc 12
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important You are here
Misc 17 (MCQ) Important
Misc 18 (MCQ)
Misc 19 (MCQ)
Last updated at March 16, 2023 by Teachoo
Misc 16 Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be red in color. Find the probability that the transferred ball is black. Let A : Event of drawing red ball from Bag II E1 : Event that red ball is transferred from Bag I E2 : Event that black ball is transferred from Bag I We need to find out the probability that the ball transferred is black, if ball drawn is red in color i.e. P(E2|A) P(E2|A) = (𝑃(𝐸_2 ).𝑃(𝐴|𝐸_2))/(𝑃(𝐸_1 ).𝑃(𝐴|𝐸_1)+𝑃(𝐸_2 ).𝑃(𝐴|𝐸_2) ) "P(E1)" = Probability that red ball is transferred from Bag I = 3/7 P(A|E1) = Probability that red ball is drawn from bag II ,if red ball is transferred from Bag I = 5/10 = 1/2 "P(E1)" = Probability that red ball is transferred from Bag I = 3/7 P(A|E1) = Probability that red ball is drawn from bag II ,if red ball is transferred from Bag I = 5/10 = 1/2 "P(E2)" = Probability that black ball is transferred from Bag I = 4/7 P(A|E2) = Probability that red ball is drawn from bag II ,if black ball is transferred from Bag I = 4/10 = 2/5 P(E2|A) = (𝑃(𝐸_2 ).𝑃(𝐴|𝐸_2))/(𝑃(𝐸_1 ).𝑃(𝐴|𝐸_1)+𝑃(𝐸_2 ).𝑃(𝐴|𝐸_2) ) = (4/7 ×2/5 )/(3/7 ×1/2 + 4/7 ×2/5) = (8/35 )/(3/14+ 8/35) = (8/35 )/((15+16)/70 ) = (𝟏𝟔 )/𝟑𝟏