Check sibling questions

Misc 7 - A die is thrown again and again until three sixes

Misc 7 - Chapter 13 Class 12 Probability - Part 2
Misc 7 - Chapter 13 Class 12 Probability - Part 3
Misc 7 - Chapter 13 Class 12 Probability - Part 4

Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month


Transcript

Misc 7 A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die. We need to find probability of obtaining the third six in the sixth throw of the die. P(getting 3rd six in 6th throw) = P(getting 2 sixes in 5 throws) × P(getting a six on 6th throw) = P(getting 2 sixes in 5 throws) × 1/6 Calculating P(getting 2 sixes in 5 throws) Let X : be the number six we get on 5 throws Throwing a pair of die is a Bernoulli trial So, X has binomial distribution P(X = x) = nCx 𝒒^(𝒏−𝒙) 𝒑^𝒙 Here n = number of times die is thrown = 5 p = Probability of getting a six = 1/6 q = 1 – 1/6 = 5/6 Hence, P(X = x) = 5Cx (𝟏/𝟔)^𝒙 (𝟓/𝟔)^(𝟓 − 𝒙) We need to find P(getting 2 sixes in 5 throws) i.e. P(X = 2) P(X = 2) = 5C2 (1/6)^2 (5/6)^(5 − 2 ) = 5!/( (5 − 2) ! 2 !) (1/6)^2 (5/6)^3 = (5 × 4 × 3! )/(3 ! × 2 !) 1/(6 × 6) × (5/6)^3 = 10/(6^2 ) (5/6)^3 = (10 ×〖 5〗^3)/(6^2 × 6^3 ) =(10 ×〖 5〗^3)/6^5 Hence, Required Probability = P(X = 2) × 1/6 = (10 ×〖 5〗^3)/6^5 ×1/6 = (10 ×〖 5〗^3)/6^6 = (10 × 125)/46656 = 𝟔𝟐𝟓/𝟐𝟑𝟑𝟐𝟖

Davneet Singh's photo - Teacher, Engineer, Marketer

Made by

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths and Science at Teachoo.