web analytics

Misc 16 - Let A = {1, 2, 3}. Then number of relations containing - Miscellaneous

Slide47.JPG
Slide48.JPG

  1. Chapter 1 Class 12 Relation and Functions
  2. Serial order wise
Ask Download

Transcript

Misc 16 Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is (A) 1 (B) 2 (C) 3 (D) 4 Total possible pairs = { (1, 1) , (1, 2), (1, 3), (2, 1) , (2, 2), (2, 3), (3, 1) , (3, 2), (3, 3) } Total possible pairs = { (1, 1) , (1, 2), (1, 3), (2, 1) , (2, 2), (2, 3), (3, 1) , (3, 2), (3, 3) } Reflexive means (a, a) should be in relation . So, (1, 1) , (2, 2) , (3, 3) should be in a relation Symmetric means if (a, b) is in relation, then (b, a) should be in relation . So, since (1, 2) is in relation, (2, 1) should be in relation & since (1, 3) is in relation, (3, 1) should be in relation Transitive means if (a, b) is in relation, & (b, c) is in relation, then (a, c) is in relation We need relation which is not transitive. So, we cannot add any more pair in the relation. If we add (2, 3), we need to add (3, 2) for symmetric, but it would become transitive then Relation R1 = { So, there is only 1 possible relation Correct answer is A.

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.
Jail