# Ex 1.4, 2 - Chapter 1 Class 12 Relation and Functions

Last updated at Jan. 28, 2020 by Teachoo

Last updated at Jan. 28, 2020 by Teachoo

Transcript

Ex 1.4, 2 For each binary operation * defined below, determine whether * is commutative or associative. (i) On Z, define a * b = a − b Check commutative * is commutative if a * b = b * a Since a * b ≠ b * a * is not commutative a * b = a – b b * a = b – a Check associative * is associative if (a * b) * c = a * (b * c) Since (a * b) * c ≠ a * (b * c) * is not an associative binary operation (a * b)* c = (a – b) * c = (a – b) – c = a – b – c a * (b * c) = a * (b – c) = a – (b – c) = a – b + c Ex 1.4, 2 For each binary operation * defined below, determine whether * is commutative or associative. (ii) On Q, define a * b = ab + 1 Check commutative * is commutative if a * b = b * a Since a * b = b * a ∀ a, b ∈ Q * is commutative a * b = ab + 1 b * a = ba + 1 = ab + 1 Check associative * is associative if (a * b) * c = a * (b * c) Since (a * b) * c ≠ a * (b * c) * is not an associative binary operation (a * b)* c = (ab + 1) * c = (ab + 1)c + 1 = abc + c + 1 a * (b * c) = a * (bc + 1) = a(bc + 1) + 1 = abc + a + 1 a * (b * c) = a * (bc + 1) = a(bc + 1) + 1 = abc + a + 1 Ex 1.4, 2 For each binary operation * defined below, determine whether * is commutative or associative. (iii) On Q, define a * b = ab/2 Check commutative * is commutative if a * b = b * a Since a * b = b * a ∀ a, b ∈ Q * is commutative a * b = 𝑎𝑏/2 b * a = 𝑏𝑎/2 = 𝑎𝑏/2 Check associative * is associative if (a * b) * c = a * (b * c) Since (a * b) * c = a * (b * c) ∀ a, b, c ∈ Q * is an associative binary operation (a * b)* c = (𝑎𝑏/2) * c = (𝑎𝑏/2 × 𝑐)/2 = 𝑎𝑏𝑐/4 a * (b * c) = a * (𝑏𝑐/2) = (𝑎 × 𝑏𝑐/2)/2 = 𝑎𝑏𝑐/4 Ex 1.4, 2 For each binary operation * defined below, determine whether * is commutative or associative. (iv) On Z+, define a * b = 2^𝑎𝑏 Check commutative * is commutative if a * b = b * a Since a * b = b * a ∀ a, b, c ∈ Z+ * is commutative a * b = 2^𝑎𝑏 b * a = 2^𝑏𝑎 = 2^𝑎𝑏 Check associative * is associative if (a * b) * c = a * (b * c) Since (a * b) * c ≠ a * (b * c) * is not an associative binary operation (a * b)* c = (2^𝑎𝑏) * c = 2^(2^𝑎𝑏 𝑐) a * (b * c) = a * (2^𝑏𝑐) = 2^(𝑎2^𝑏𝑐 ) Ex 1.4, 2 For each binary operation * defined below, determine whether * is commutative or associative. (v) On Z+, define a * b = 𝑎^𝑏 Check commutative * is commutative if a * b = b * a Since a * b ≠ b * a * is not commutative a * b = 𝑎^𝑏 b * a = 𝑏^𝑎 Check associative * is associative if (a * b) * c = a * (b * c) Example Let a = 2, b = 3, c = 4 (a * b)* c = (𝑎^𝑏) * c = (𝑎^𝑏 )^𝑐 a * (b * c) = a * (2^𝑏𝑐) = 2^(𝑎2^𝑏𝑐 ) (a * b)* c = (2 * 3) * 4 = (2^3) * 4 = 8 * 4 = 8^4 a * (b * c) = 2 * (3 * 4) = 2 * (3^4) = 2 * 81 = 2^81 Since (a * b) * c ≠ a * (b * c) * is not an associative binary operation Ex 1.4, 2 For each binary operation * defined below, determine whether * is commutative or associative. (vi) On R − {−1}, define a * b = a/(b + 1) Check commutative * is commutative if a * b = b * a Since a * b ≠ b * a * is not commutative a * b = 𝑎/(𝑏 + 1) b * a = 𝑏/(𝑎 + 1) Check associative * is associative if (a * b) * c = a * (b * c) Since (a * b) * c ≠ a * (b * c) * is not an associative binary operation (a * b)* c = (𝑎/(𝑏 + 1)) * c = ((𝑎/(𝑏 + 1)))/(𝑐 + 1) = 𝑎/((𝑏 + 1)(𝑐 + 1)) a * (b * c) = a * (𝑏/(𝑐 + 1)) = 𝑎/((𝑏/(𝑐 + 1) + 1) ) = (𝑎(𝑐 + 1))/(𝑏 + 𝑐 + 1)

Ex 1.4

Ex 1.4 ,1
Important
Deleted for CBSE Board 2021 Exams only

Ex 1.4, 2 Important Deleted for CBSE Board 2021 Exams only You are here

Ex 1.4, 3 Deleted for CBSE Board 2021 Exams only

Ex 1.4, 4 Deleted for CBSE Board 2021 Exams only

Ex 1.4, 5 Deleted for CBSE Board 2021 Exams only

Ex 1.4, 6 Deleted for CBSE Board 2021 Exams only

Ex 1.4, 7 Deleted for CBSE Board 2021 Exams only

Ex 1.4, 8 Deleted for CBSE Board 2021 Exams only

Ex 1.4, 9 Deleted for CBSE Board 2021 Exams only

Ex 1.4, 10 Deleted for CBSE Board 2021 Exams only

Ex 1.4, 11 Important Deleted for CBSE Board 2021 Exams only

Ex 1.4, 12 Deleted for CBSE Board 2021 Exams only

Ex 1.4, 13 Deleted for CBSE Board 2021 Exams only

Chapter 1 Class 12 Relation and Functions

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.