Slide7.JPG

Slide8.JPG
Slide9.JPG


Transcript

Ex 1.2, 2 Check the injectivity and surjectivity of the following functions: (i) f: N → N given by f(x) = x2 f(x) = x2 Checking one-one (injective) f (x1) = (x1)2 f (x2) = (x2)2 Putting f (x1) = f (x2) (x1)2 = (x2)2 ∴ x1 = x2 or x1 = –x2 Since x1 & x2 are natural numbers, they are always positive. Hence, x1 = x2 Hence, it is one-one (injective) Check onto (surjective) f(x) = x2 Let f(x) = y , such that y ∈ N x2 = y x = ±√𝒚 Putting y = 2 x = √2 = 1.41 Since x is not a natural number Given function f is not onto So, f is not onto (not surjective)

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.