Check sibling questions

    Slide1.JPG

Slide2.JPG
Slide3.JPG Slide4.JPG Slide5.JPG Slide6.JPG

This video is only available for Teachoo black users

This video is only available for Teachoo black users

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Ex 1.2, 1 Show that the function f: R* β†’ R* defined by f(x) = 1/x is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true, if the domain R* is replaced by N with co-domain being same as R*? Solving for f: R* β†’ R* f(x) = 1/x Checking one-one f (x1) = 1/π‘₯1 f (x2) = 1/π‘₯2 Putting f (x1) = f (x2) 1/x1 = 1/x2 x2 = x1 Hence, if f(x1) = f(x2) , x1 = x2 ∴ f is one-one Check onto f: R* β†’ R* f(x) = 1/π‘₯ Let y = f(x) , such that y ∈ R* y = 1/π‘₯ x = 1/𝑦 Since y not equal to 0, x is possible Thus we can say that if y ∈ R – {0} , then x ∈ R – {0} also Thus, For every y ∈ R* , there exists x ∈ R* such that f(x) = y Hence, f is onto Show that the function f: R* β†’ R* defined by f(x) = 1/x is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true, if the domain R* is replaced by N with co-domain being same as R*? Now, domain R* is replaced by N , codomain remains R* Hence f : N β†’ R* f(x) = 1/x Checking one-one f (x1) = 1/x1 f (x2) = 1/x2 f (x1) = f (x2) 1/x1 = 1/x2 x2 = x1 Hence, if f(x1) = f(x2) , x1 = x2 ∴ f is one-one Check onto f: N β†’ R* f(x) = 1/x Let y = f(x) , , such that y ∈ R* y = 1/π‘₯ x = 1/𝑦Since y is real number except 0, x cannot always be a natural number Example For y = 2 x = 1/2 So, x is not a natural number Hence, f is not onto

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.