



Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 3.2
Ex 3.2, 1 (ii)
Ex 3.2, 2 (i)
Ex 3.2, 2 (ii)
Ex 3.2, 2 (iii)
Ex 3.2, 3 (i) Important
Ex 3.2, 3 (ii) Important
Ex 3.2, 3 (iii)
Ex 3.2, 3 (iv) Important
Ex 3.2, 3 (v)
Ex 3.2, 4 (i)
Ex 3.2, 4 (ii)
Ex 3.2, 4 (iii) Important
Ex 3.2, 4 (iv)
Ex 3.2, 5
Ex 3.2, 6 Important You are here
Ex 3.2, 7 Important
Last updated at March 28, 2023 by Teachoo
Ex 3.2, 6 Given the linear equation 2x + 3y – 8 = 0, write another linear equation in two variables such that the geometrical representation of the pair so formed is: (i) intersecting lines (ii) parallel lines (iii) coincident lines Given equation 2x + 3y − 8 = 0 Therefore, a1 = 2 , b1 = 3 , c1 = –8 (i) For Intersecting Lines For intersecting lines 𝑎1/𝑎2 ≠ 𝑏1/𝑏2 Since, a1 = 2 , b1 = 3 , c1 = –8 a2, b2, c2 can be a2 = 1 , b2 = 1 , c2 = 1 Thus, an intersecting line is x + y + 1 = 0 (ii) For Parallel Lines For Parallel lines 𝑎1/𝑎2 = 𝑏1/𝑏2 ≠ 𝑐1/𝑐2 Since, a1 = 2 , b1 = 3 , c1 = –8 a2, b2, c2 can be a2 = 4 , b2 = 6 , c2 = 1 Thus, a parallel line is 4x + 6y + 1 = 0 (iii) For Coincident Lines For Coincident lines 𝑎1/𝑎2 = 𝑏1/𝑏2 = 𝑐1/𝑐2 Since, a1 = 2 , b1 = 3 , c1 = –8 a2, b2, c2 can be a2 = 4 , b2 = 6 , c2 = −16 Thus, a coincident line is 4x + 6y − 16 = 0