Example 39 (i) - Differentiate √(3x + 2) + 1/√(2x^2 + 4) - Teachoo - Examples

part 2 - Example 39 (i) - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability
part 3 - Example 39 (i) - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability
part 4 - Example 39 (i) - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

 

 

Share on WhatsApp

Transcript

Example 39 Differentiate w.r.t. x, the following function: (i) √(3𝑥+2) + 1/√(2𝑥^2+ 4) Let y = √(3𝑥+2) + 1/√(2𝑥^2+ 4 ) Differentiating 𝑤.𝑟.𝑡.𝑥 𝑑𝑦/𝑑𝑥 = 𝑑(√(3𝑥 + 2) " + " 1/√(2𝑥^2 + 4 ))/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 𝑑(√(3𝑥 + 2))/𝑑𝑥 + 𝑑(1/√(2𝑥^2 + 4 ))/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 𝑑(√(3𝑥 + 2))/𝑑𝑥 + (𝑑(2𝑥^2 + 4)^((−1)/2))/𝑑𝑥 Calculating 𝑑(√(3𝑥 + 2))/𝑑𝑥 & (𝑑(2𝑥^2 + 4)^((−1)/2))/𝑑𝑥 separately Calculating 𝐝(√(𝟑𝐱 + 𝟐))/𝒅𝒙 𝑑(√(3𝑥 + 2))/𝑑𝑥 = 1/(2√(3𝑥 + 2 )) × 𝑑(3𝑥 + 2)/𝑑𝑥 = 1/(2√(3𝑥 + 2 )) × (3+0) = 𝟑/(𝟐√(𝟑𝒙 + 𝟐 )) Calculating (𝒅(𝟐𝒙^𝟐 + 𝟒)^((−𝟏)/𝟐))/𝒅𝒙 (𝑑(2𝑥^2 + 4)^((−1)/2))/𝑑𝑥 = (−1)/2 〖(2𝑥^2+4)〗^((−1)/( 2) −1) . 𝑑(2𝑥^2+ 4)/𝑑𝑥 = (−1)/2 (2𝑥^2+ 4)^((−3)/( 2)) . (𝑑(2𝑥^2 )/𝑑𝑥 + 𝑑(4)/𝑑𝑥) = (−1)/2 (2𝑥^2+ 4)^((−3)/( 2)) . (4𝑥+0) = (−4𝑥)/2 (2𝑥^2+ 4)^((−3)/( 2)) = (−𝟐𝒙)/(𝟐𝒙^𝟐+ 𝟒)^(𝟑/𝟐) Hence, 𝑑𝑦/𝑑𝑥 = 𝑑(√(3𝑥+2))/𝑑𝑥 + 𝑑(1/√(2𝑥^2+ 4 ))/𝑑𝑥 𝒅𝒚/𝒅𝒙 = 𝟑/(𝟐√(𝟑𝒙 + 𝟐 )) − 𝟐𝒙/(𝟐𝒙^𝟐+ 𝟒)^(𝟑/( 𝟐))

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo