Finding second order derivatives- Implicit form

Chapter 5 Class 12 Continuity and Differentiability
Concept wise   This video is only available for Teachoo black users    This video is only available for Teachoo black users

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

### Transcript

Example 38 (Method 1) If y = 〖𝑠𝑖𝑛〗^(−1) 𝑥, show that (1 – 𝑥2) 𝑑2𝑦/𝑑𝑥2 − 𝑥 𝑑𝑦/𝑑𝑥 = 0 . We have 𝑦 = 〖𝑠𝑖𝑛〗^(−1) 𝑥 Differentiating 𝑤.𝑟.𝑡.𝑥 𝑑𝑦/𝑑𝑥 = 𝑑(〖𝑠𝑖𝑛〗^(−1) 𝑥)/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 1/√(〖1 − 𝑥〗^2 ) √((𝟏−𝒙^𝟐 ) ) 𝒚^′ = 𝟏 Squaring both sides ("As " 𝑑(〖𝑠𝑖𝑛〗^(−1) 𝑥)/𝑑𝑥 " = " 1/√(〖1 − 𝑥〗^2 )) (√((1−𝑥^2 ) ) 𝑦^′ )^2 = 1^2 (1−𝑥^2 )(𝑦^′ )^2 = 1 Again Differentiating 𝑤.𝑟.𝑡.𝑥 𝑑/𝑑𝑥 ((1−𝑥^2 )(𝑦^′ )^2 ) = (𝑑(1))/𝑑𝑥 d(1 − x^2 )/𝑑𝑥 (𝑦^′ )^2+(1−𝑥^2 ) 𝑑((𝑦^′ )^2 )/𝑑𝑥 = 0 −2𝑥(𝑦^′ )^2+(1−𝑥^2 ) 2𝑦^′ × 𝑦^′′ = 0 〖2y〗^′ [−𝒙𝒚^′+(𝟏−𝒙^𝟐 ) 𝒚^′′ ] = 0 −𝑥𝑦^′+(1−𝑥^2 ) 𝑦^′′=0 (〖𝟏−𝒙〗^𝟐 ) (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 − 𝒙 . 𝒅𝒚/𝒅𝒙 = 0 Example 38 (Method 2) If y = 〖𝑠𝑖𝑛〗^(−1) 𝑥, show that (1 – 𝑥2) 𝑑2𝑦/𝑑𝑥2 − 𝑥 𝑑𝑦/𝑑𝑥 = 0 . We have 𝑦 = 〖𝑠𝑖𝑛〗^(−1) 𝑥 Differentiating 𝑤.𝑟.𝑡.𝑥 𝑑𝑦/𝑑𝑥 = 𝑑(〖𝑠𝑖𝑛〗^(−1) 𝑥)/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 1/√(〖1 − 𝑥〗^2 ) 𝒅𝒚/𝒅𝒙 = (〖𝟏−𝒙〗^𝟐 )^((−𝟏)/( 𝟐)) ("As " 𝑑(〖𝑠𝑖𝑛〗^(−1) 𝑥)/𝑑𝑥 " = " 1/√(〖1 − 𝑥〗^2 )) Again Differentiating 𝑤.𝑟.𝑡.𝑥 𝑑/𝑑𝑥 (𝑑𝑦/𝑑𝑥) = (𝑑(〖1 − 𝑥〗^2 )^((−1)/( 2)))/𝑑𝑥 (𝑑^2 𝑦)/〖𝑑𝑥〗^2 = (−1)/( 2) (〖1−𝑥〗^2 )^((−1)/( 2) −1) . 𝑑(〖1 − 𝑥〗^2 )/𝑑𝑥 (𝑑^2 𝑦)/〖𝑑𝑥〗^2 = (−1)/( 2) (〖1−𝑥〗^2 )^((−3)/2 ). (0−2𝑥) (𝑑^2 𝑦)/〖𝑑𝑥〗^2 = (−1)/( 2) (〖1−𝑥〗^2 )^((−3)/2 ). (−2𝑥) (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 = 𝒙(〖𝟏−𝒙〗^𝟐 )^((−𝟑)/𝟐 ) Now, We need to prove (〖1−𝑥〗^2 ) (𝑑^2 𝑦)/〖𝑑𝑥〗^2 − 𝑥 . 𝑑𝑦/𝑑𝑥 = 0 Solving LHS (〖1−𝑥〗^2 ) (𝑑^2 𝑦)/〖𝑑𝑥〗^2 − 𝑥 . 𝑑𝑦/𝑑𝑥 = (〖1−𝑥〗^2 ) . (𝑥〖 (〖1−𝑥〗^2 )〗^((−3)/2 ) ) − 𝑥 (〖1−𝑥〗^2 )^((−1)/( 2)) = 𝑥〖 (〖1−𝑥〗^2 )〗^(𝟏 + ((−𝟑)/𝟐) )−𝑥 (〖1−𝑥〗^2 )^((−1)/( 2)) = 𝑥〖 (〖1−𝑥〗^2 )〗^((−1)/( 2))−𝑥 (〖1−𝑥〗^2 )^((−1)/( 2)) = 0 = RHS Hence proved 