Check sibling questions

Ex 5.7, 17 - If y = (tan-1 x)2, show (x2 + 1) y2 + 2x(x2 + 1)

Ex 5.7, 17 - Chapter 5 Class 12 Continuity and Differentiability - Part 2
Ex 5.7, 17 - Chapter 5 Class 12 Continuity and Differentiability - Part 3 Ex 5.7, 17 - Chapter 5 Class 12 Continuity and Differentiability - Part 4 Ex 5.7, 17 - Chapter 5 Class 12 Continuity and Differentiability - Part 5 Ex 5.7, 17 - Chapter 5 Class 12 Continuity and Differentiability - Part 6

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Ex 5.7, 17 (Method 1) If 𝑦= γ€–(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)γ€—^(2 ), show that γ€–(π‘₯^2+1)γ€—^(2 ) 𝑦2 + 2π‘₯ γ€–(π‘₯^2+1)γ€—^ 𝑦1 = 2 We have y = γ€–(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)γ€—^(2 ) Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ y’ = 2 tanβˆ’1 π‘₯ Γ— 1/(1 + π‘₯^2 ) (1 + π‘₯^2) y’ = 2 tanβˆ’1 π‘₯ Again differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ [𝑦^β€² (1+π‘₯^2 )]^β€² = 2 Γ— 1/(1 +γ€– π‘₯γ€—^2 ) [𝑦^β€² (1+π‘₯^2 )]^β€² = 2/(1 + π‘₯^2 ) (tan^(βˆ’1)⁑π‘₯ )^β€²=1/(1+π‘₯^2 ) Using product rule (1+π‘₯^2 )^β€² + 𝑦^β€²β€² (1 + π‘₯^2) = 2/(1 + π‘₯^2 ) 2π‘₯ 𝑦^β€²+𝑦^β€²β€² (1 +π‘₯^2 ) = 2/(1 + π‘₯^2 ) 2π‘₯ 𝑦^β€² (1 +π‘₯^2 )+𝑦^β€²β€² (1 +π‘₯^2 )Γ—(1 +π‘₯^2 ) = 2 2π‘₯(1 +π‘₯^2 ) 𝑦^β€²+𝑦^β€²β€² (1 +π‘₯^2 )^2 = 2 π’š^β€²β€² (𝟏 +𝒙^𝟐 )^𝟐+πŸπ’™(𝟏 +𝒙^𝟐 ) π’š^β€² = 2 Hence Proved Ex 5.7, 17 (Method 2) If 𝑦= γ€–(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)γ€—^(2 ), show that γ€–(π‘₯^2+1)γ€—^(2 ) 𝑦2 + 2π‘₯ γ€–(π‘₯^2+1)γ€—^ 𝑦1 = 2 We have y = γ€–(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)γ€—^(2 ) Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑𝑦/𝑑π‘₯ = (𝑑 (γ€–(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)γ€—^(2 )))/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = 2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯ . 𝑑(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = 2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯ . 1/(1 +γ€– π‘₯γ€—^2 ) Hence, 𝑦1 = 𝑑𝑦/𝑑π‘₯ = (2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)/(1 +γ€– π‘₯γ€—^2 ) Again Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑/𝑑π‘₯ (𝑑𝑦/𝑑π‘₯) = 𝑑/𝑑π‘₯ ((2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)/(1 +γ€– π‘₯γ€—^2 )) (𝑑^2 𝑦)/(𝑑π‘₯^2 ) = 2 𝑑/𝑑π‘₯ ((γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)/(1 +γ€– π‘₯γ€—^2 )) (𝑑^2 𝑦)/(𝑑π‘₯^2 ) = 2 [(𝑑(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)/𝑑π‘₯ . (1 +γ€– π‘₯γ€—^2 ) βˆ’ 𝑑(1 +γ€– π‘₯γ€—^2 )/𝑑π‘₯ .γ€– π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)/(1 +γ€– π‘₯γ€—^2 )^2 ] (𝑑^2 𝑦)/(𝑑π‘₯^2 ) = 2 [(1/(1 +γ€– π‘₯γ€—^2 ) . (1 +γ€– π‘₯γ€—^2 ) βˆ’ (𝑑(1)/𝑑π‘₯ + 𝑑(π‘₯^2 )/𝑑π‘₯) . γ€– π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)/(1 +γ€– π‘₯γ€—^2 )^2 ] Using quotient Rule As, (𝑒/𝑣)^β€²= (𝑒’𝑣 βˆ’ 𝑣’𝑒)/𝑣^2 where u = tan-1 x & v = 1 + x2 (𝑑^2 𝑦)/(𝑑π‘₯^2 ) = 2 [( 1 βˆ’ (0 + 2π‘₯) γ€– π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)/(1 +γ€– π‘₯γ€—^2 )^2 ] (𝑑^2 𝑦)/(𝑑π‘₯^2 ) = 2 [( 1 βˆ’ 2π‘₯ .γ€– π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)/(1 +γ€– π‘₯γ€—^2 )^2 ] Thus, π’š2 = 2 [( 𝟏 βˆ’ πŸπ’™ .γ€– 𝒕𝒂𝒏〗^(βˆ’πŸ) 𝒙)/(𝟏 +γ€– 𝒙〗^𝟐 )^𝟐 ] We need to show γ€–(π‘₯^2+1)γ€—^(2 ) 𝑦2 + 2π‘₯ γ€–(π‘₯^2+1)γ€—^ 𝑦1 = 2 Solving LHS γ€–(π‘₯^2+1)γ€—^(2 ) 𝑦2 + 2π‘₯ γ€–(π‘₯^2+1)γ€—^ 𝑦1 = γ€–(π‘₯^2+1)γ€—^(2 ). 2 [( 1 βˆ’ 2π‘₯ .γ€– π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)/(1 +γ€– π‘₯γ€—^2 )^2 ] + 2π‘₯ (π‘₯2+1) . ((2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯)/(1 +γ€– π‘₯γ€—^2 )) = 2 (1βˆ’2π‘₯ γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯) + 4π‘₯ γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯ = 2 – 4x 〖𝒕𝒂𝒏〗^(βˆ’πŸ) x + 4x 〖𝒕𝒂𝒏〗^(βˆ’πŸ) x = 2 Hence proved .

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.