Ex 5.7, 10 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at April 16, 2024 by Teachoo
Last updated at April 16, 2024 by Teachoo
Ex 5.7, 10 Find the second order derivatives of the function 〖 sin〗〖 (log〖𝑥)〗 〗 Let y = 〖 sin〗〖 (log〖𝑥)〗 〗 Differentiating 𝑤.𝑟.𝑡.𝑥 . 𝑑𝑦/𝑑𝑥 = (𝑑(〖 sin〗〖 (log〖𝑥)〗 〗))/𝑑𝑥 𝑑𝑦/𝑑𝑥 = cos(log𝑥) . (𝑑(log〖𝑥)〗)/𝑑𝑥 𝑑𝑦/𝑑𝑥 = cos(log𝑥) . 1/𝑥 𝑑𝑦/𝑑𝑥 = (cos(log𝑥))/𝑥 Again Differentiating 𝑤.𝑟.𝑡.𝑥 𝑑/𝑑𝑥 (𝑑𝑦/𝑑𝑥) = 𝑑/𝑑𝑥 ((cos(log𝑥))/𝑥) (𝑑^2 𝑦)/(𝑑𝑥^2 ) = 𝑑/𝑑𝑥 ((cos(log𝑥))/𝑥) (𝑑^2 𝑦)/(𝑑𝑥^2 ) = ((𝑑(cos(log𝑥)))/𝑑𝑥 . 𝑥 − (𝑑 (𝑥))/𝑑𝑥 . cos(log𝑥))/𝑥^2 (𝑑^2 𝑦)/(𝑑𝑥^2 ) = (−〖sin 〗(log𝑥 ) . 𝑑(log𝑥 )/𝑑𝑥 . 𝑥 − 1 . cos(log𝑥))/𝑥^2 Using Quotient Rule As, (𝑢/𝑣)^′= (𝑢’𝑣 − 𝑣’𝑢)/𝑣^2 where v = cos (log x) & v = x (𝑑^2 𝑦)/(𝑑𝑥^2 ) = (−〖sin 〗(log𝑥 ) . 1/𝑥 . 𝑥 − cos (log𝑥))/𝑥^2 (𝑑^2 𝑦)/(𝑑𝑥^2 ) = (−〖sin 〗(log𝑥 ) − cos(log𝑥))/𝑥^2 (𝒅^𝟐 𝒚)/(𝒅𝒙^𝟐 ) = (− [〖𝒔𝒊𝒏 〗(𝒍𝒐𝒈𝒙 ) + 𝒄𝒐𝒔(𝒍𝒐𝒈𝒙)])/𝒙^𝟐