Examples

Chapter 2 Class 12 Inverse Trigonometric Functions
Serial order wise      This video is only available for Teachoo black users This video is only available for Teachoo black users

Solve all your doubts with Teachoo Black (new monthly pack available now!)

### Transcript

Example 11 Show that sin−1 12/13 + cos−1 4/5 + tan−1 63/16 = π Let a = sin−1 12/13 & b = cos−1 4/5 We convert sin−1 & cos−1 to tan–1 & then use tan (a + b) formula Let a = sin−1 𝟏𝟐/𝟏𝟑 sin a = 12/13 We know that cos a = √(1−sin2⁡𝑎 ) =√(1−(12/13)^2 ) " =" √(25/169) "=" 5/13 Now, tan a = sin⁡𝑎/cos⁡𝑎 = (12/13)/(5/13) = 12/13 × 13/5 = 12/5 Let b = cos−1 𝟒/𝟓 cos b = 4/5 We know that sin b = √("1 – cos2 b " ) = √("1 − " (4/5)^2 ) = √(9/25) = 3/5 Now, tan b = sin⁡𝑏/cos⁡𝑏 = (3/5)/(4/5) = 3/5 × 5/4 = 3/4 We know that tan (a + b) = 𝒕𝒂𝒏⁡〖𝒂 +〖 𝒕𝒂𝒏〗⁡〖𝒃 〗 〗/(𝟏 − 𝒕𝒂𝒏⁡〖𝒂 𝒕𝒂𝒏⁡𝒃 〗 ) Putting tan a = 12/5 and tan b = 3/4 = (12/5 + 3/4)/(1 − 12/5 × 3/4) = ((48 +15 )/20)/((20 − 36)/20) = (63/20)/((−16)/20) = 63/20 × 20/(−16) = (−𝟔𝟑)/( 𝟏𝟔) Hence, tan (a + b) = (−63)/16 a + b = tan-1 (( −63)/16) Putting value of a & b sin−1 𝟏𝟐/𝟏𝟑 + cos−1 𝟒/𝟓 = tan−1 (( −𝟔𝟑)/𝟏𝟔) Solving L.H.S sin−1 12/13 + cos−1 4/5 + tan−1 63/16 Putting values = tan−1 ((−63)/16) + tan−1 (63/16) Using tan−1x + tan−1y = tan−1((𝒙 + 𝒚)/(𝟏 − 𝒙𝒚)) Putting x = (−63)/16 and y by = 63/16 = tan−1(((− 63)/16 + 63/16)/(1 − (− 63)/16 × 63/16)) = tan−1(0/(1+ (( 63)/16)^2 )) = tan−1 0 = π = R.H.S Hence L.H.S = R.H.S Hence proved As tan 180° = 0 tan π = 0 π = tan−1 0 i.e. tan−1 0 = π 