Check sibling questions

Example 7 - Show that tan-1 x + tan-1 2x/(1-x2) - Inverse

Example 7 - Chapter 2 Class 12 Inverse Trigonometric Functions - Part 2

This video is only available for Teachoo black users

Solve all your doubts with Teachoo Black (new monthly pack available now!)


Example 7 Show that tan-1 π‘₯ + tan-1 2π‘₯/(1 βˆ’π‘₯2) = tan-1 (3π‘₯ βˆ’ π‘₯3)/(1 βˆ’ 3π‘₯2) Solving L.H.S tan-1 π‘₯ + tan-1 2π‘₯/(1 βˆ’ π‘₯2) = tan-1 (π‘₯ + 2π‘₯/(1 βˆ’ π‘₯2))/(1βˆ’ π‘₯ Γ— 2π‘₯/(1 βˆ’ π‘₯2)) = tan-1 ((π‘₯(1 βˆ’ π‘₯2) + 2π‘₯)/(1 βˆ’ π‘₯2))/(γ€–(1 βˆ’ π‘₯2) βˆ’ 2π‘₯γ€—^2/(1 βˆ’ π‘₯2)) We know that tan-1 x + tan-1 y = tan-1 ((𝒙+π’š )/(𝟏 βˆ’π’™π’š)) Replacing x by x and y by 2π‘₯/(1 βˆ’ π‘₯2) = tan-1 ((π‘₯ βˆ’ π‘₯3 + 2π‘₯)/(1 βˆ’ π‘₯2))/(γ€–1 βˆ’ π‘₯2βˆ’ 2π‘₯γ€—^2/(1 βˆ’ π‘₯2)) = tan-1 ((3π‘₯ βˆ’ π‘₯3)/(1 βˆ’ π‘₯2))/(γ€–1 βˆ’ 3π‘₯γ€—^2/(1 βˆ’ π‘₯2)) = tan-1 (3π‘₯ βˆ’ π‘₯3)/(1 βˆ’ π‘₯2) Γ— (1 βˆ’ π‘₯2)/γ€–1 βˆ’ 3π‘₯γ€—^2 = tan-1 (3π‘₯ βˆ’ π‘₯3)/γ€–1 βˆ’ 3π‘₯γ€—^2 = R.H.S Thus L.H.S = R.H.S Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.