
CBSE Class 10 Sample Paper for 2026 Boards - Maths Basic
CBSE Class 10 Sample Paper for 2026 Boards - Maths Basic
Last updated at Sept. 10, 2025 by Teachoo
Transcript
Question 30 Prove that : (sinπ β cosπ + 1). (secπ β tanπ) = (sinπ + cosπ β 1)Solving LHS (π ππ π₯βπππ π₯+1) Γ (π ππ π₯ βπ‘ππ π₯) = (πππ πβπππ π+π) Γ (π/ππ¨π¬β‘π βπ¬π’π§β‘π/ππ¨π¬β‘π ) = (π ππ π₯βπππ π₯+1) Γ ((1 β sinβ‘π₯)/cosβ‘π₯ ) = (1+π ππ π₯βπππ π₯) Γ ((1 β sinβ‘π₯)/cosβ‘π₯ ) = ([1+π ππ π₯]βπππ π₯) Γ ((1 β sinβ‘π₯)/cosβ‘π₯ ) = (π+π¬π’π§β‘π ) Γ ((π β πππβ‘π)/πππβ‘π )βππ¨π¬β‘π Γ((π β πππβ‘π)/πππβ‘π ) = ((1 + sinβ‘π₯ )(1 β sinβ‘π₯))/cosβ‘π₯ β(1βsinβ‘π₯) = (π β γπ¬π’π§γ^πβ‘π)/cosβ‘π₯ β(1βsinβ‘π₯) Putting 1 β sin2 x = cos2 x = γππ¨π¬γ^πβ‘π/cosβ‘π₯ β(1βsinβ‘π₯) = πππ π₯β(1βsinβ‘π₯) = πππ π₯β1+sinβ‘π₯ = (πππ π+πππ πβπ)