Slide52.JPG

Slide53.JPG
Slide54.JPG

 


Transcript

Misc, 20 If ((1 + )/(1 ))^ = 1, then find the least positive integral value of m. We need to find minimum value of m which is positive as well as integer. Lets first find the value of ((1 + )/(1 )) (1 + )/(1 ) Rationalizing = (1 + )/(1 ) (1 + )/(1 + ) = ((1 + ) (1 + ))/((1 )(1 + )) = (1 + )2/((1)2 ( )2) = (1 + ( )2 + 2 1 )/(1 2) = (1 + 2 + 2 )/(1 2) Putting i2 = 1 = (1+ ( 1) + 2 )/(1 ( 1) ) = (1 1+ 2 )/(1+1) = (0 + 2 )/2 = 2 /2 = Hence, (1 + )/(1 ) = Given ((1 + )/(1 ))^ = 1 ( ) = 1 We know that 2 = 1 Squaring both sides ( 2)2 = ( 1)2 4 = 1 Hence the minimum value of m which satisfies the equation is 4

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.