


Miscellaneous
Misc 2
Misc 3
Misc 4 Important You are here
Misc 5 (i) Deleted for CBSE Board 2022 Exams
Misc 5 (ii) Important
Misc 6
Misc 7
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13 Important Deleted for CBSE Board 2022 Exams
Misc 14
Misc 15 Important
Misc 16
Misc 17 Important
Misc 18 Important
Misc 19
Misc 20 Important
Last updated at March 9, 2017 by Teachoo
Misc 4 If x β iy = β((a β ib)/(c β id)) prove that (π₯2 + π¦2)^2 = (a^2 + b^2)/(c^2 + d^2 ) Introduction (π₯ β ππ¦) (π₯+ ππ¦) Using ( a β b ) ( a + b ) = a2 β b2 = (π₯)^2 β (ππ¦)2 = π₯2 β (π) 2π¦2 = π₯2 β (β 1)π¦2 = π₯2 + π¦2 Misc 4 If x β iy = β((a β ib)/(c β id)) prove that (π₯2 + π¦2)^2 = (a^2 + b^2)/(c^2 + d^2 ) Given π₯ β ππ¦ = β((a β ib)/(c β id)) Calculating π₯ + ππ¦ Replacing β π by π π₯ + ππ¦ = β((a + ib)/( c + id)) Multiplying (1) &(2) (π₯ βππ¦) (π₯+ ππ¦) = β((a β ib)/(c β id)) Γ β((a + ib)/(c + id)) π₯2+π¦2 =β((aβib)/(cβid)Γ(a + ib)/(c + id)) =β((( a β ib) (a + ib))/((c β id) (c + id))) Using ( a β b ) ( a + b ) = a2 β b2 =β(((a)^2 β (ib)^2 )/((c)^2βγ (id)γ^2 )) =β((a^2 β i^2 b^2 )/(c^2 β i^2 d^2 )) Putting i2 = β1 =β((a2β(β1) b2 )/(c2β(β1)d2)) =β((a2+ b2 )/(c + d2)) Hence, π₯2 + π¦2 =β((a2+ b2 )/(c2 + d2)) Squaring both sides (x2 + y2)2 =(β((a2+ b2 )/(c2 + d2)))^2 (x2 + y2)2 = (a2+ b2 )/(c2 + d2) Hence Proved