






Get live Maths 1-on-1 Classs - Class 6 to 12
Miscellaneous
Misc 2
Misc 3
Misc 4 Important
Misc 5 (i) Deleted for CBSE Board 2023 Exams
Misc 5 (ii) Important Deleted for CBSE Board 2023 Exams
Misc 6 Deleted for CBSE Board 2023 Exams
Misc 7 Deleted for CBSE Board 2023 Exams
Misc 8 Important Deleted for CBSE Board 2023 Exams
Misc 9 Deleted for CBSE Board 2023 Exams
Misc 10 Important
Misc 11 You are here
Misc 12
Misc 13 Important
Misc 14
Misc 15 Important
Misc 16
Misc 17 Important
Misc 18 Important
Misc 19
Misc 20 Important
Last updated at March 22, 2023 by Teachoo
Misc 11 (Method 1) If a + ib = (x + π)2/(2x^2 + 1) , prove that π2 + π2 = (x^2+ 1)2/(2x^2+ 1)^2 π + ππ = (x + i)2/(2x2+ 1) Using ( π + π )^2 = π2 + π2 + 2ππ = (π₯2 + (π)^2 + 2π₯π)/(2π₯2+1) Putting π2 = β1 = (π₯2 β 1 + 2π₯π)/(2π₯2+ 1) = (x2 β 1)/(2x2 + 1) + π 2x/(2x2 + 1) Hence π + ππ = (x2 β 1)/(2x2 + 1) + π 2x/(2x2 + 1) Comparing real part π = (π₯^2 β 1)/(2π₯^2 + 1) Comparing imaginary part b = 2π₯/(2π₯2 + 1) Calculating π2 + π2 π2 + π2 = ((π₯^2 β 1)/(2π₯2 + 1))^2 + (2π₯/(2π₯2 + 1))^2 = ((π₯2β 1)2 + (2π₯)2)/((2π₯2 + 1)2) Using (π β π)^2 = π2 + π2 β 2ππ = ((π₯2 )2 + (1)2 β 2( π₯2)1 + 4π₯2)/( (2π₯2 + 1)2) = (π₯4 + 1 β2π₯2 + 4π₯2)/((2π₯2 +1)2) = (π₯4 + 1 + 2π₯2)/((2π₯2 + 1)2) = ((π₯2)2 + (1)2 + 2(π₯2) (1))/((2π₯^2 + 1)2) Using ( π + π )^2 = π2 + π2 + 2ππ = (π₯2+ 1)2/((2π₯2 + 1)2) Hence π2 + π2 = (π₯2+ 1)2/((2π₯2 + 1)2) Hence proved Misc 11 (Method 2) If a + ib = (x + π)2/(2x^2 + 1) , prove that a2 + b2 = (x2 + 1)2/((2x2 + 1)2) Introduction (π + ππ) ( π β ππ) Using ( a β b ) ( a + b ) = a2 β b2 = π2 β (ππ)2 = π2 β π2π2 Putting i2 = β1 = π2β (β1) π2 = π2 + π2 Hence, (π + ππ) (π β ππ) = π2 + π2 Misc 11 (Method 2) If a + ib = (x + π)2/(2x^2 + 1) , prove that a2 + b2 = (x2 + 1)2/((2x2 + 1)2) Given π + ππ = (π₯ + π)2/(2π₯2 + 1) For π β ππ Replace π by β π in (1) π β ππ = (π₯ β π)2/(2π₯2 + 1) Calculating (π β ππ) (π + ππ) (π β ππ) (π + ππ) = (π₯ β π)2/(2π₯2 + 1) Γ (π₯ + π)2/(2π₯2 + 1) π2 + π2 = ((π₯ β π)2 (π₯ + π)2)/(2π₯2 +1)2 = ( (π₯ β π) (π₯ + π))^2/(2π₯2 +1)2 Using ( a β b ) ( a + b ) = a2 β b2 = (( π₯^2 β (π)^2 )^2 )/(2π₯^2 + 1)2 = γ( π₯2β (β1)) γ^2/(2π₯2 + 1)2 = ( π₯2 + 1)2/(2π₯2 + 1)2 Hence a2 + b2 = (π₯2 + 1 )/(2π₯2 + 1) Hence proved