Β

Β

Get live Maths 1-on-1 Classs - Class 6 to 12

Miscellaneous

Misc 1
Important

Misc 2

Misc 3

Misc 4 Important

Misc 5 (i) Deleted for CBSE Board 2023 Exams You are here

Misc 5 (ii) Important Deleted for CBSE Board 2023 Exams

Misc 6 Deleted for CBSE Board 2023 Exams

Misc 7 Deleted for CBSE Board 2023 Exams

Misc 8 Important Deleted for CBSE Board 2023 Exams

Misc 9 Deleted for CBSE Board 2023 Exams

Misc 10 Important

Misc 11

Misc 12

Misc 13 Important

Misc 14

Misc 15 Important

Misc 16

Misc 17 Important

Misc 18 Important

Misc 19

Misc 20 Important

Last updated at March 22, 2023 by Teachoo

Misc 5 Convert the following in the polar form: (i) (1 + 7π)/(2 β π)2 Let z = ( 1+7π)/(2 β π)2 Using ( a β b)2 = a2 + b2 β 2ab = ((1 + 7π))/((2)2+ (i)2 β 2 Γ 2 Γ π) = ( 1 + 7π)/(4 + π2β 4π) Putting π2 = -1 = (1 + 7π)/(4 + ( β1 ) β 4π) = (1 + 7π )/(4 β 1 β 4π ) = (1 + 7π)/(3 β 4π) Rationalizing the Same = (1 + 7π)/(3 β 4π) Γ (3 + 4π)/(3 + 4π) = ((1+7π) (3 + 4π ))/((3 β4π) (3 β4π)) = (1 (3+4π) +7π (3 + 4π ))/((3 β4π) (3 + 4π)) = (3 + 4π + 21π + 28π2)/((3 β 4π) (3 + 4π)) = (3 + 25π + 28π2)/((3 β 4π) (3 + 4π)) Using (a β b) (a + b) = a2 β b2 = (3 + 25π + 28π2)/((3)2β (4π)2) = (3 + 25π + 28π2)/(9 β 16π2) Putting π2 = 1 = (3 + 25π + 28 (β1 ))/(9 β16 ( β1 )) = (3 + 25π β 28)/(9 + 16) = (3 β 28 + 25π)/25 = (β 25 + 25π)/25 = ( 25 ( β1 + π ))/25 = - 1 + π Hence, z = β 1 + π Let polar form be z = π (cosβ‘ΞΈ+πsinβ‘ΞΈ ) From (1) and (2) β1 + π = r (cos ΞΈ + π sin ΞΈ) β1 + π = r cos ΞΈ + π r sin ΞΈ Comparing real part β 1 = r cos ΞΈ Squaring both sides (β 1 )2 =( π cosβ‘ΞΈ )^2 1 = π2 cos2ΞΈ Adding (3) and (4) 1 + 1 = π2 cos2 ΞΈ + π2 sin2 ΞΈ 1 + 1 = r2 cos2 ΞΈ + r2 sin2 ΞΈ 2 = r2 ( cos2 ΞΈ + sin2 ΞΈ ) 2 = r2 Γ 1 2 = r2 β2 = r r = β2 Now finding argument β1 + π = r cos ΞΈ + π r sin ΞΈ Comparing real part β 1 = r cos ΞΈ Putting r =β2 β 1 = β2 cos ΞΈ (β 1 )/β2 = cos ΞΈ cos ΞΈ = (β 1 )/β2 Hence, cos ΞΈ = (β 1 )/β2 & sin ΞΈ = ( 1)/β2 Hence, cos ΞΈ = (β 1 )/β2 & sin ΞΈ = ( 1)/β2 Since, sin ΞΈ is positive and cos ΞΈ is negative, Hence, ΞΈ lies in IInd quadrant Argument = 180Β° β 45Β° = 135Β° = 135Β° Γ π/(180Β°) = 3π/4 Hence, argument of π§ = 3π/4 Hence π = β2 and ΞΈ = 3π/4 Polar form of π§=π (cosβ‘ΞΈ+sinβ‘ΞΈ ) = β2 (cos(3π/4)+sin(3π/4))