Maths Crash Course - Live lectures + all videos + Real time Doubt solving!

Examples

Example 1

Example 2 Important

Example 3

Example 4

Example 5 Important

Example 6 (i)

Example 6 (ii) Important

Example 6 (iii)

Example 6 (iv)

Example 6 (v)

Example 7 Important

Example 8 (i)

Example 8 (ii)

Example 9 Important

Example 10

Example 11 Important

Example 12

Example 13 Important

Example 14

Example 15

Example 16

Example 17

Example 18 Important

Example 19

Example 20

Example 21

Example 22 Important

Example 23

Example 24 Important

Example 25 Important

Example 26

Example 27 Important

Example 28

Example 29 Important

Example 30

Example 31 Deleted for CBSE Board 2023 Exams You are here

Example 32 Important

Example 33 Important

Example 34 Important

Chapter 1 Class 11 Sets

Serial order wise

Last updated at Sept. 3, 2021 by Teachoo

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!

Example 31 For any sets A and B, show that P(A ∩ B) = P(A) ∩ P(B). To prove two sets equal, we need to prove that they are subset of each other i.e.. we have to prove P (A ∩ B) ⊂ P (A) ∩ P (B) & P(A) ∩ P(B) ⊂ P ( A ∩ B) Let a set X belong to Power set P(A ∩ B) i.e. X ∈ P ( A ∩ B ). As set X is in the power set of A ∩ B, X is a subset of A ∩ B because power set is the set of all subsets ⊂ Subset A ⊂ B (all elements of set A in set B) Thus, X is a subset of A ∩ B i.e. X ⊂ A ∩ B. So, X ⊂ A and X ⊂ B. Therefore, Since X is a subset of A & B, X is in power set of A and X is in power set of B i.e. X ∈ P(A) and X ∈ P(B) i.e. X ∈ P(A) and X ∈ P(B) ⇒ X ∈ P(A) ∩ P(B). So, if X ∈ P (A ∩ B), then X ∈ P(A) ∩ P(B) i.e. all elements of set P (A ∩ B) are in set P(A) ∩ P(B) Thus, gives P (A ∩ B) ⊂ P (A) ∩ P (B). Similarly, Let a set Y belong to Power set P(A) ∩ P(B) i.e. Y ∈ P (A) ∩ P(B). Then Y ∈ P (A) and Y ∈ P ( B ). As set Y is in the power set of A & B, Y is a subset of A & Y is a subset of B because power set is the set of all subsets Thus, Y ⊂ A and Y ⊂ B. ∴ Y ⊂ A ∩ B, Therefore, Since Y is a subset of A ∩ B, Y is in power set of A ∩ B ⇒ Y ∈ P ( A ∩ B ). So, if Y ∈ P (A) ∩ P(B) , then Y ∈ P ( A ∩ B ). This gives P (A) ∩ P (B) ⊂ P (A ∩ B) Now, Since P (A ∩ B) ⊂ P (A) ∩ P (B) & P(A) ∩ P(B) ⊂ P ( A ∩ B) Hence, P ( A ∩ B ) = P ( A ) ∩ P ( B ).