Learn about Sets on our Youtube Channel - https://you.tube/Chapter-1-Class-11-Sets

Last updated at Jan. 27, 2020 by Teachoo
Transcript
Example 22 Let U = {1, 2, 3, 4, 5, 6}, A = {2, 3} and B = {3, 4, 5}. Find A′, B′ , A′ ∩ B′, A ∪ B and hence show that (A ∪ B)′ = A′ ∩ B′. A′ = U – A = {1, 2, 3, 4, 5, 6} – {2, 3} = {1, 4, 5, 6} B′ = U – B = {1, 2, 3, 4, 5, 6} – {3, 4, 5} = {1, 2, 6} Now, A′ ∩ B′ = {1, 4, 5, 6} ∩ {1, 2, 6} = {1, 6} ∩ Intersection – Common of two sets ∪ Union - Combination of two sets Also, A ∪ B = {2, 3} ∪ {3, 4, 5} = { 2, 3, 4, 5 } Now, we need to prove (A ∪ B)′ = A′ ∩ B′ (A ∪ B)′ = U – (A ∪ B ) = {1, 2, 3, 4, 5, 6} – {2, 3, 4, 5} = {1, 6} Now, A′ ∩ B′ = {1, 6} & (A ∪ B)′ = {1, 6} Thus, (A ∪ B)′ = A′ ∩ B′ Hence proved
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6 Important
Example 7
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16
Example 17
Example 18 Important Not in Syllabus - CBSE Exams 2021
Example 19 Not in Syllabus - CBSE Exams 2021
Example 20 Not in Syllabus - CBSE Exams 2021
Example 21 Not in Syllabus - CBSE Exams 2021
Example 22 Important Not in Syllabus - CBSE Exams 2021 You are here
Example 23
Example 24 Important
Example 25 Important
Example 26
Example 27 Important
Example 28
Example 29 Important
Example 30 Important
Example 31 Important
Example 32 Important
Example 33 Important
Example 34 Important
About the Author