Slide44.JPG

Slide45.JPG
Slide46.JPG


Transcript

Example 25 Show that A ∪ B = A ∩ B implies A = B In order to prove A = B, we should prove A is a subset of B i.e. A ⊂ B & B is a subset of A i.e. B ⊂ A Let x ∈ A. Then, x ∈ A ∪ B. Since A ∪ B = A ∩ B , ∴ x ∈ A ∩ B. So, x ∈ B. ∴ If x ∈ A , then x ∈ B i.e. if an elements belongs to set A, then it must belong to set B also Therefore, A ⊂ B. Similarly, if y ∈ B, then y ∈ A ∪ B. Since A ∪ B = A ∩ B, y ∈ A ∩ B. So, y ∈ A. ∴ If y ∈ B , then y ∈ A i.e. if an elements belongs to set B, then it must belong to set A also Therefore, B ⊂ A. From (1) & (2) A ⊂ B & B ⊂ A Thus, A = B Hence shown

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.