


Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Examples
Example 2 Important
Example 3
Example 4
Example 5 Important
Example 6 (i)
Example 6 (ii) Important
Example 6 (iii)
Example 6 (iv)
Example 6 (v)
Example 7 Important
Example 8 (i)
Example 8 (ii)
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16
Example 17
Example 18 Important
Example 19
Example 20
Example 21
Example 22 Important
Example 23
Example 24 Important
Example 25 Important
Example 26
Example 27 Important
Example 28
Example 29 Important
Example 30 You are here
Example 31 Deleted for CBSE Board 2023 Exams
Example 32 Important
Example 33 Important
Example 34 Important
Last updated at Sept. 3, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Example 30 Show that A ∪ B = A ∩ B implies A = B In order to prove A = B, we should prove A is a subset of B i.e. A ⊂ B & B is a subset of A i.e. B ⊂ A Let x ∈ A. Then, x ∈ A ∪ B. Since A ∪ B = A ∩ B , ∴ x ∈ A ∩ B. So, x ∈ B. ∴ If x ∈ A , then x ∈ B i.e. if an elements belongs to set A, then it must belong to set B also Therefore, A ⊂ B. Similarly, if y ∈ B, then y ∈ A ∪ B. Since A ∪ B = A ∩ B, y ∈ A ∩ B. So, y ∈ A. ∴ If y ∈ B , then y ∈ A …(1) i.e. if an elements belongs to set B, then it must belong to set A also Therefore, B ⊂ A. From (1) & (2) A ⊂ B & B ⊂ A Thus, A = B Hence shown