# Ex 3.2, 4 - Chapter 3 Class 12 Matrices (Term 1)

Last updated at Dec. 8, 2016 by Teachoo

Last updated at Dec. 8, 2016 by Teachoo

Transcript

Ex 3.2, 4 If A = [ 8(1&2& 3@5&0&2@1& 1&1)], B = [ 8(3& 1&2@4&2&5@2&0&3)] and , C = [ 8(4&1&2@0&3&2@1& 2&3)] then compute (A+B) and (B C) . Also, verify that A + (B C) = (A + B) C Calculating A + B A + B = [ 8(1&2& 3@5&0&2@1& 1&1)]+ [ 8(3& 1&2@4&2&5@2&0&3)] = [ 8(1+3&2 1& 3+2@5+4&0+2&2+5@1+2& 1+0&1+3)] = [ 8(4&1& 1@9&2&7@3& 1&4)] Calculating B C B C = [ 8(3& 1&2@4&2&5@2&0&3)] [ 8(4&1&2@0&3&2@1& 2&3)] = [ 8(3 4& 1 1&2 2@4 0&2 3&5 2@2 1&0 ( 2)&3 3)] = [ 8( 1& 2&0@4& 1&3@1&2&0)] We need to verify A + (B C) = (A + B) C Taking L.H.S A + (B C) = [ 8(1&2& 3@5&0&2@1& 1&1)]+ [ 8( 1& 2&0@4& 1&3@1&2&0)] = [ 8(1 1&2 2& 3+0@5+4&0 1&2+3@1+1& 1+2&1+0)] = [ 8(0&0& 3@9& 1&5@2&1&1)] Taking R.H.S (A + B) C = [ 8(4&1& 1@9&2&7@3& 1&4)] [ 8(4&1&2@0&3&2@1& 2&3)] = [ 8(4 4&1 1& 1 2@9 0&2 3&7 2@3 1& 1+2&4 3)] = [ 8(0&0& 3@9& 1&5@2&1&1)] = L.H.S Hence L.H.S = R.H.S Hence proved

Ex 3.2

Ex 3.2, 1

Ex 3.2, 2 (i)

Ex 3.2, 2 (ii) Important

Ex 3.2, 2 (iii)

Ex 3.2, 2 (iv)

Ex 3.2, 3 (i)

Ex 3.2, 3 (ii) Important

Ex 3.2, 3 (iii)

Ex 3.2, 3 (iv) Important

Ex 3.2, 3 (v)

Ex 3.2, 3 (vi) Important

Ex 3.2, 4 You are here

Ex 3.2, 5

Ex 3.2, 6

Ex 3.2, 7 (i)

Ex 3.2, 7 (ii) Important

Ex 3.2, 8

Ex 3.2, 9

Ex 3.2, 10

Ex 3.2, 11

Ex 3.2, 12 Important

Ex 3.2, 13 Important

Ex 3.2, 14

Ex 3.2, 15

Ex 3.2, 16 Important

Ex 3.2, 17 Important

Ex 3.2, 18

Ex 3.2, 19 Important

Ex 3.2, 20 Important

Ex 3.2, 21 (MCQ) Important

Ex 3.2, 22 (MCQ) Important

Chapter 3 Class 12 Matrices (Term 1)

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.