Important Area Questions
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Deleted for CBSE Board 2024 Exams
Question 4 Important Deleted for CBSE Board 2024 Exams You are here
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Important Deleted for CBSE Board 2024 Exams
Question 9 Deleted for CBSE Board 2024 Exams
Question 10 Deleted for CBSE Board 2024 Exams
Question 11 Deleted for CBSE Board 2024 Exams
Question 12 Important Deleted for CBSE Board 2024 Exams
Question 13 Important Deleted for CBSE Board 2024 Exams
Question 14 Deleted for CBSE Board 2024 Exams
Question 15 Important Deleted for CBSE Board 2024 Exams
Question 16 Important Deleted for CBSE Board 2024 Exams
Important Area Questions
Last updated at April 16, 2024 by Teachoo
Question 4 Find the area of the shaded region in figure, where a circular arc of radius 6 cm has been drawn with vertex O of an equilateral triangle OAB of side 12 cm as centre. Area of shaded region = Area of circle with radius 6 cm + Area of equilateral triangle with side 12 cm – Area of sector ODE Area of circle Radius of circle = r = 6 cm Area of circle = 𝜋r2 = 22/7×(6)2 = 22/7 × 36 = 792/7 cm2 Area of equilateral triangle Area of equilateral triangle = √3/4 (side)2 = √3/4×(12)^2 = √3/4×12×12 = √3×3×12 = 36√3 cm2 Area of sector ODE Radius = r = 6 cm , & θ = ∠ DOE = 60° Area of sector OCD = θ/360×𝜋𝑟2 = (∠DO𝐸)/360×𝜋𝑟2 = (60°)/(360°)×22/7×62 = 1/6×22/7×6×6 = 22/7×6 = 132/7 Now, Area of shaded region = Area of circle with radius 6 cm + Area of equilateral triangle with side 12 cm – Area of sector ODE = 792/7+36√3 −132/7 = (792 + 7 × 36√(3 )− 132)/7 = (792 + 252√3 − 132)/7 = (660 + 252√3)/7 = 660/7 + (252√3)/7 = (660/7 +36√3) cm2 Hence, area of shaded region = (660/7+36√3) cm2