Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Important Area Questions
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Deleted for CBSE Board 2024 Exams
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams You are here
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Important Deleted for CBSE Board 2024 Exams
Question 9 Deleted for CBSE Board 2024 Exams
Question 10 Deleted for CBSE Board 2024 Exams
Question 11 Deleted for CBSE Board 2024 Exams
Question 12 Important Deleted for CBSE Board 2024 Exams
Question 13 Important Deleted for CBSE Board 2024 Exams
Question 14 Deleted for CBSE Board 2024 Exams
Question 15 Important Deleted for CBSE Board 2024 Exams
Question 16 Important Deleted for CBSE Board 2024 Exams
Important Area Questions
Last updated at May 29, 2023 by Teachoo
Question 5 From each corner of a square of side 4 cm a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut as shown in figure. Find the area of the remaining portion of the square. Area of remaining portion = Area of square – Area of middle circle – Area of 4 quadrants For square ABCD Area of square = (side)2 = (4)2 = 4 × 4 = 16 For middle circle Diameter = 2 cm Hence, radius = r = 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟/2 = 2/2 = 1 cm Area of middle circle = 𝜋𝑟2 = 22/7×1×1 = 22/7 cm2 For quadrant radius = r = 1 cm Area of 1 quadrant = 1/4 of (area of circle ) = 1/4×πr2 = 1/4×22/7×12 = 22/28 Since, all quadrants have same radius So, area of 4 quadrant = 4 × Area of 1 quadrant = 4 × 22/28 = 22/7 cm2 Area of remaining portion = Area of square – Area of middle circle – Area of 4 quadrants = 16 – 22/7−22/7 = (16 × 7 − 22 − 22)/7 = (112 − 44)/7 = 68/7 cm2 Hence, area of remaining portion = 68/7 cm2