Important Area Questions
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 Deleted for CBSE Board 2025 Exams
Question 4 Important Deleted for CBSE Board 2025 Exams
Question 5 Deleted for CBSE Board 2025 Exams
Question 6 Deleted for CBSE Board 2025 Exams
Question 7 Deleted for CBSE Board 2025 Exams
Question 8 Important Deleted for CBSE Board 2025 Exams
Question 9 Deleted for CBSE Board 2025 Exams
Question 10 Deleted for CBSE Board 2025 Exams
Question 11 Deleted for CBSE Board 2025 Exams
Question 12 Important Deleted for CBSE Board 2025 Exams
Question 13 Important Deleted for CBSE Board 2025 Exams
Question 14 Deleted for CBSE Board 2025 Exams
Question 15 Important Deleted for CBSE Board 2025 Exams
Question 16 Important Deleted for CBSE Board 2025 Exams
Important Area Questions
Last updated at April 16, 2024 by Teachoo
Question 1 Find the area of the shaded region in figure, if PQ = 24 cm, PR = 7 cm and O is the centre of the circle. Area of shaded region = Area of semicircle – Area of ΔPQR Since , QR is diameter, It forms a semicircle. We know that angle in a semicircle is a right angle. Hence , ∠ RPQ = 90° Hence, ΔRPQ is right triangle Now , as per Pythagoras theorem (Hypotenuse)2 = (Height)2 + (Base)2 (QR)2 = (PQ)2 + (PR)2 Putting values (QR)2 = (24)2 + (7)2 (QR)2 = 576 + 49 (QR)2 = 625 QR = √625 QR = √(25×25) QR = √((25)2) QR = 25 Here, QR = diameter of the circle = 25 cm So, radius = 𝑄𝑅/2 = 25/2 cm Area of circle = 𝜋𝑟2 Area of semicircle = 1/2×area of circle = 1/2×𝜋𝑟2 = 1/2×22/7×(25/2)^2 = 1/2×22/7×25/2×25/2 = (11 × 25 × 25)/28 = 6875/28 cm2 Area of Δ PQR Δ PQR is a right angled triangle with Base PQ & Height PR Area of Δ PQR = 1/2 × Base × Height = 1/2×PQ×PR = 1/2×24×7 = 12×7 = 84 cm2 Area of shaded region = Area of semicircle – Area of ΔPQR = 6875/28− 84 = (6875 − (84)(28))/28 = (6875 − 2352)/28 = 4523/28 cm2 Here, area of shaded region = 4523/28 cm2