

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Chapter 6 Class 10 Triangles
Example 8 Important
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 2 Important Deleted for CBSE Board 2024 Exams You are here
Theorem 6.1 - Basic Proportionality Theorem (BPT) Important
Theorem 6.7 Important Deleted for CBSE Board 2024 Exams
Ex 6.2, 4 Important
Ex 6.2, 5 Important
Ex 6.2, 6 Important
Ex 6.2, 9 Important
Ex 6.3, 11 Important
Ex 6.3, 12 Important
Ex 6.3, 13 Important
Ex 6.3, 14 Important
Ex 6.3, 15 Important
Question 1 Important Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 5 Important Deleted for CBSE Board 2024 Exams
Question 2 Important Deleted for CBSE Board 2024 Exams You are here
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 8 Important Deleted for CBSE Board 2024 Exams
Question 7 Important Deleted for CBSE Board 2024 Exams
Question 9 Important Deleted for CBSE Board 2024 Exams
Chapter 6 Class 10 Triangles
Last updated at May 29, 2023 by Teachoo
Question 2 In figure, ∠ ACB = 90° and CD ⊥ AB. Prove that BC2/AC2=BD/AD Given:- ΔCAB, ∠ ACB = 90° And CD ⊥ AB To Prove :- BC2/AC2=BD/AD Proof : From theorem 6.7, If a perpendicular is drawn from the vertex of the right angle to the hypotenuse then triangles on both sides of the Perpendicular are similar to the whole triangle and to each other So, ∆ 𝐴𝐶𝐷 ~ ∆ 𝐴𝐵𝐶 & ∆ 𝐵𝐶𝐷 ~ ∆ 𝐵𝐴𝐶. From (1) ∆ 𝐴𝐶𝐷 ~ ∆ 𝐴𝐵𝐶 If two triangles are similar , then the ratio of their corresponding sides are equal 𝐴𝐶/𝐴𝐵=𝐴𝐷/𝐴𝐶 AC ×𝐴𝐶=𝐴𝐵×𝐴𝐷 AC2 = AB ×𝐴𝐷 Similarly, from (2) ∆ 𝐵𝐶𝐷 ~ ∆ 𝐵𝐴𝐶 If two triangles are similar , then the ratio of their corresponding sides are equal 𝐵𝐶/𝐵𝐴=𝐵𝐷/𝐵𝐶 BC × BC = BA × BD BC2 = BA × BD Divide equation ((4))/((3)) 𝐵𝐶2/𝐴𝐶2=(𝐵𝐴 × 𝐵𝐷)/(𝐴𝐵 × 𝐴𝐷) 𝐵𝐶2/𝐴𝐶2=𝐵𝐷/𝐴𝐷 Hence proved