Last updated at May 29, 2018 by Teachoo
Transcript
Example 2 Check whether the following are quadratic equations: (i) (x 2)2 + 1 = 2x 3 (x 2)2 + 1 = 2x 3 Using (a b)2 = a2 + b2 2ab (x2 + 4 4x) + 1 = 2x 3 x2 + 5 4x = 2x 3 x2 + 5 4x 2x + 3 = 0 x2 6x + 8 = 0 It is the form ax2 + b x + c = 0 Where, a = 1, b = 6, c = 8 Hence it is a quadratic equation . Example 2 Check whether the following are quadratic equations: (ii) x(x + 1) + 8 = (x + 2) (x 2) x (x + 1) + 8 = (x + 2) (x 2) Using (a + b) (a b) = a2 b2 x (x + 1) + 8 = x2 4 x2 + x + 8 = x2 4 x2 + x + 8 x2 + 4 = 0 (x2 x2) + x + 8 + 4 = 0 x + 12 = 0 Since the highest power is 1 not 2 It is not in the form of 2 + + =0 It is not a quadratic equation . Example 2 Check whether the following are quadratic equations: (iii) x (2x + 3) = x2 + 1 x(2x + 3) = x2 + 1 2x2 + 3x = x2 + 1 2x2 + 3x x2 1 = 0 (2x2 x2) + 3x 1 = 0 x2 + 3x 1 = 0 It is the form of ax2 + bx + c = 0 Where a = 1, b = 3, c = 1 Hence, it is a quadratic equation . Example 2 Check whether the following are quadratic equations: (iv) (x + 2)3 = x3 4 (x + 2)3 = x3 4 Using (a + b)3 = a3 + b3 + 3a2b + 3ab2 x3 + 23 + 3 (x2) (2) + 3 (x) (2)^2 = x3 4 x3 + 8 + 6x2 + 12x = x3 4 x3 + 8 + 6x2 + 12 x x3 + 4 = 0 6x2 + 12x + 12 = 0 6(x2 + 2x + 2) = 0 x2 + 2x + 2 = 0 It is of the form ax2 + bx + c = 0 Where a = 1, b = 2, c = 2 Hence it is quadratic equation
Examples
Example 1 (ii)
Example 2 Important You are here
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Deleted for CBSE Board 2022 Exams
Example 8 Important Deleted for CBSE Board 2022 Exams
Example 9 Deleted for CBSE Board 2022 Exams
Example 10
Example 11
Example 12 Important
Example 13
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Examples
About the Author