web analytics

Ex 4.3, 1 - Find roots by completing the square (i) 2x2 - - Solving by completing square

  1. Chapter 4 Class 10 Quadratic Equations
  2. Serial order wise
Ask Download

Transcript

Ex 4.3 ,1 Find the roots of the following quadratic equations, if they exist, by the method of completing the square: (i) 2x2 – 7x + 3 = 0 2x2 – 7x +3 = 0 Dividing by 2 (2𝑥2 − 7𝑥 + 3 = 0)/2=0/2 2𝑥2/2 – 7𝑥/2 + 3/2=0 x2 – 7𝑥/2+3/2=0 We know that (a – b)2 = a2 – 2ab + b2 Here, a = x & – 2ab = – 7𝑥/2 – 2xb = −7𝑥/2 b = −7𝑥/(2(−2𝑥)) b = 7/4 Now, in our equation x2 −7𝑥/2+3/2=0 Adding and subtracting (7/4)^2 x2 −7𝑥/2+3/2+(7/4)^2−(7/4)^2=0 x2 +(7/4)^2−7𝑥/2+3/2−(7/4)^2=0 (𝑥− 7/4)^2+3/2 −(7/4)^2=0 (𝑥− 7/4)^2+3/2−49/16=0 (𝑥− 7/4)^2+(3(8) − 49)/16=0 (𝑥− 7/4)^2+(24 − 49)/16=0 (𝑥− 7/4)^2−25/16=0 (𝑥−7/4)^2=25/16 (𝑥−7/4)^2=(5/4)^2 Cancelling square both sides 𝑥−7/4 = ± 5/4 Ex 4.3 ,1 Find the roots of the following quadratic equations, if they exist, by the method of completing the square: (ii) 2x2 + x – 4 = 0 2x2 + x – 4 = 0 Dividing whole equation by 2 (2𝑥2 + 𝑥 − 4)/2=0/2 2𝑥2/2+𝑥/2−4/2=0 x2 + 𝑥/2−2=0 We know that (a + b)2 = a2 + 2ab + b2 Here, a = x & 2ab = 𝑥/2 2xb = 𝑥/2 2b = 1/2 b = 1/2 × 1/2 b = 1/4 Now, in our equation x2 + 𝑥/2−2=0 Adding and subtracting (1/4)^2 x2 + 𝑥/2−2+(1/4)^2−(1/4)^2= 0 x2 + 𝑥/2+(1/4)^2– 2 – (1/4)^2=0 (𝑥+1/4)^2−2−(1/4)^2= 0 (𝑥+1/4)^2−2 −1/16=0 (𝑥+1/4)^2=2+1/16 (𝑥+1/4)^2=(2(16) + 1)/16 (𝑥+1/4)^2=(32 + 1)/16 (𝑥+1/4)^2=33/16 (𝑥+1/4)^2=(√33/4)^2 Cancelling square both sides 𝑥+1/4 = ± √33/4 Solving So, the root of the equation are x = (√33 − 1)/4 & x = (−(√33 + 1))/4 Ex 4.3 ,1 Find the roots of the following quadratic equations, if they exist, by the method of completing the square: (iii) 4x2 + 4√3 𝑥+3=0 4x2 + 4 √3 𝑥+3=0 Dividing whole equation 4 (4𝑥^2+ 4 √3 𝑥+ 3)/4=0/4 (4𝑥^2)/4 + (4 √3)/4 x + 3/4=0 x2 + √3 𝑥+ 3/4 = 0 We know that (a + b)2 = a2 + 2ab + b2 Here, a = x & 2ab = √3 𝑥 2xb = √3 𝑥 2b = √3 b = √3/2 Now, in our equation x2 + √3 𝑥+3/4=0 Adding and subtracting (√3/2)^2 x2 + √3 𝑥+3/4+(√3/2)^2−(√3/2)^2=0 x2 + √3 𝑥+(√3/2)^2+3/4−(√3/2)^2=0 (𝑥+√3/2 )^2+3/4−(√3/2)^2=0 (𝑥+√3/2 )^2+3/4−3/4=0 (𝑥+√3/2 )^2=0 (𝑥+√3/2 )^2=02 Cancelling square both sides (𝑥+√3/2 )^2= ± 0 So, the root of the equation are x = (−√3)/2 & x = (−√3)/2 Ex 4.3 ,1 Find the roots of the following quadratic equations, if they exist, by the method of completing the square: (iv) 2x2 + x + 4 = 0 2x2 + x + 4 = 0 Dividing equation by 2 (2𝑥2 + 𝑥 + 4)/2=0/2 2𝑥2/2+𝑥/2 + 4/2=0 x2 + 𝑥/2+2=0 We know that (a + b)2 = a2 + 2ab + b2 Here, a = x & 2ab = 𝑥/2 2xb = 𝑥/2 2b = 1/2 b = 1/2×1/2 b = 1/4 Now, in our equation x2 + 𝑥/2+2=0 Adding and subtracting (1/4)^2 x2 + 𝑥/2 +2+(1/4)^2−(1/4)^2=0 "x2 + " 𝑥/2+(1/4)^2+2−(1/4)^2=0 (𝑥+1/4)^2+2−(1/4)^2=0 (𝑥+1/4)^2+2−1/16=0 (𝑥+1/4)^2+((32 − 1)/16)=0 (𝑥+1/4)^2+ 31/16=0 (𝑥+1/4)^2=(−31)/16 Since square of any number cannot be negative So, answer does not exist

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.
  • Rahul Singh ASG's image
    Rahul Singh ASG
    Oct. 10, 2017, 9:26 a.m.

    a tower subtends an angle of 30 a point on the same level as its foot. at second point h meters above the first the depression of the foot of the tower is 60. the height of tower is= please help me sir

    View answer
Jail