Completing the square and Word Problems
Question 1 (ii) Important
Question 1 (iii) You are here
Question 1 (iv) Important
Question 2 (i)
Question 2 (ii)
Question 2 (iii)
Question 2 (iv) Important
Question 3 (i) Important
Question 3 (ii)
Question 4
Question 5
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10 Important
Question 11
Completing the square and Word Problems
Last updated at Dec. 16, 2024 by Teachoo
Ex 4.3 ,1 Find the roots of the following quadratic equations, if they exist, by the method of completing the square: (iii) 4x2 + 4√3 𝑥+3=0 4x2 + 4 √3 𝑥+3=0 Dividing whole equation 4 (4𝑥^2+ 4 √3 𝑥+ 3)/4=0/4 (4𝑥^2)/4 + (4 √3)/4 x + 3/4=0 x2 + √3 𝑥+ 3/4 = 0 We know that (a + b)2 = a2 + 2ab + b2 Here, a = x & 2ab = √3 𝑥 2xb = √3 𝑥 2b = √3 b = √3/2 Now, in our equation x2 + √3 𝑥+3/4=0 Adding and subtracting (√3/2)^2 x2 + √3 𝑥+3/4+(√3/2)^2−(√3/2)^2=0 x2 + √3 𝑥+(√3/2)^2+3/4−(√3/2)^2=0 (𝑥+√3/2 )^2+3/4−(√3/2)^2=0 (𝑥+√3/2 )^2+3/4−3/4=0 (𝑥+√3/2 )^2=0 (𝑥+√3/2 )^2=02 Cancelling square both sides (𝑥+√3/2 )^2= ± 0 So, the root of the equation are x = (−√3)/2 & x = (−√3)/2