Slide38.JPG

Slide39.JPG
Slide40.JPG
Slide41.JPG
Slide42.JPG Slide43.JPG Slide44.JPG

Something went wrong!

The video couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.

Thanks for bearing with us!

Something went wrong!

The video couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.

Thanks for bearing with us!

Share on WhatsApp

Transcript

Ex 7.1, 6 Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer: (ii) (–3, 5), (3, 1), (0, 3), (–1, – 4) Let the points be A(−3, 5), B(3, 1) C(0, 3), D(−1, −4) We find the distances AB, BC, CD & AD By using distance formula Finding AB AB = √((𝑥2 −𝑥1)2+(𝑦2 −𝑦1)2) = √(( 3 −(−3))2+(1 −5)2) = √((3+3)2+(−4)2) = √((6)2+(4)2) = √(36+16) = √52 Finding BC BC = √((𝑥2 −𝑥1)2+(𝑦2 −𝑦1)2) = √((0 −3)2+(3 −1)2) = √((−3)2+(2)2) = √((3)2+(2)2) = √(9+4) = √13 Finding CD CD = √((𝑥2 −𝑥1)2+(𝑦2 −𝑦1)2) = √((−1−0)2+(−4−3)2) = √((−1)2+(−7)2) = √((1)2+(7)2) = √(1+49) = √50 By using distance formula Finding AD AD = √((𝑥2 −𝑥1)2+(𝑦2 −𝑦1)2) = √((−1−(−3))2+(−4−5)2) = √((−1+3)2+(−9)2) = √((2)2+(9)2) = √(4+81) = √85 Hence, AB = √52, BC = √13, CD = √50, AD = √85 Since, AB ≠ BC ≠ CD ≠ AD So, it is not a quadrilateral Why not a quadrilateral? Points are A(−3, 5), B(3, 1) C(0, 3) , D(−1, −4) Plotting them in a graph Here points A, B,C are collinear. So, ABCD is a triangle, not a quadrilateral

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo