Slide11.JPG

Slide12.JPG
Slide13.JPG

 

 

Go Ad-free

Transcript

Ex 3.2, 1 Solve the following pair of linear equations by the substitution method. (iv) 0.2x + 0.3y = 1.3 0.4x + 0.5y = 2.3 0.2x + 0.3y = 1.3 0.4x + 0.5y = 2.3 From (1) 0.2x + 0.3y = 1.3 Multiplying both side by 10 (0.2x + 0.3y ) ×10=1.3×10 2x + 3y = 13 2x = 13 – 3y x = (𝟏𝟑 − 𝟑𝒚)/𝟐 Putting value of x in (2) 0.4x + 0.5y = 2.3 0.4((13 − 3𝑦)/2) + 0.5y = 2.3 Multiplying both sides by 10 10 × 0.4((13 − 3𝑦)/2) + 10 × 0.5y = 10 × 2.3 4((13 − 3𝑦)/2)+5𝑦=23 2(13 – 3y) + 5y = 23 26 – 6y + 5y = 23 26 – y = 23 26 – 23 = y 3 = y y = 3 Putting y = 3 equation in (1) 0.2x + 0.3y = 1.3 0.2x + 0.3 (3) = 1.3 0.2x + 0.9 = 1.3 0.2x = 1.3 – 0.9 0.2x = 0.4 x = 0.4/0.2 x = 2 Hence x = 2 and y = 3 is the solution for the equation

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo