Slide45.JPG

Slide46.JPG
Slide47.JPG Slide48.JPG Slide49.JPG

 

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Ex 3.2, 3 Form the pair of linear equations for the following problems and find their solution by substitution method. (vi) Five years hence, the age of Jacob will be three times that of his son. Five years ago, Jacob’s age was seven times that of his son. What are their present ages? Let Present age of Jacob = x years & Present age of Jacob’s son = y years Five years hence (later), Jacob’s Age = x + 5 Jacob son’s Age = y + 5 Age of Jacob will be three times of his son. x + 5 = 3(y + 5) x + 5 = 3y + 15 x – 3y = 15 – 5 x – 3y = 10 Also, Five years ago, Jacob’s Age = x – 5 Jacob son’s Age = y – 5 Age of Jacob was seven times of his son. x – 5 = 7(y – 5) x – 5 = 7y – 7(5) x – 5 = 7y – 35 x – 7y = −35 + 5 x – 7y = –30 Our equations are x – 3y – 10 = 0 …(1) x – 7y + 30 = 0 …(2) From (1) x – 3y = 10 x = 3y + 10 Putting x in (2) x – 7y = −30 (3y + 10) – 7y = −30 3y + 10 – 7y = −30 – 4y = −30 − 10 – 4y = –40 y = (−40)/(−4) y = 10 Putting y = 10 in (1) x – 3y = 10 x – 3(10) = 10 x – 30 = 10 x = 10 + 30 x = 40 So, x = 40, y = 10 Thus Present age of Jacob = x = 40 years Present age of Jacob’s son = y = 10 years

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.