Check sibling questions


Transcript

Ex 10.2, 19 If ๐‘Ž โƒ— & ๐‘ โƒ— are two collinear vectors, then which following are incorrect: (A) ๐‘ โƒ— = ฮป๐‘Ž โƒ—, for some scalar ฮป (B) ๐‘Ž โƒ— = ยฑ๐‘ โƒ— (C) the respective components of ๐‘Ž โƒ— and ๐‘ โƒ— are not proportional (D) both the vectors ๐‘Ž โƒ— & ๐‘ โƒ— have same direction, but different magnitudes. Given, a โƒ— and b โƒ— are collinear We need to check which case is always true Checking (A) ๐‘ โƒ— = ฮป๐‘Ž โƒ— If two vectors if a โƒ— and b โƒ— are collinear then b โƒ— = ฮป๐‘Ž โƒ— Where ฮป is any real number โˆด (A) is always correct Checking (B) ๐‘Ž โƒ— = ยฑ๐‘ โƒ— Let ๐‘Ž โƒ— = 1i ฬ‚ + 1j ฬ‚ + 1k ฬ‚ ๐‘ โƒ— = โˆ’3i ฬ‚ โˆ’ 3j ฬ‚ โˆ’ 3k ฬ‚ Here, ๐‘Ž โƒ— and ๐‘ โƒ— are collinear as direction ratios are proportional. But, ๐‘Ž โƒ— โ‰  ยฑ๐‘ โƒ— So, (B) is not always true Checking (C) (the respective components are not proportional) By definition of collinearity, if a โƒ— and b โƒ— are collinear then b โƒ— = ฮป๐‘Ž โƒ— Where ฮป is any real number Hence, the components of a โƒ— and b โƒ— are always proportional Hence, (C) is incorrect Checking (D) (both ๐‘Ž โƒ— and ๐‘ โƒ— have same direction, but different magnitudes) Let ๐‘Ž โƒ— = 1๐‘– ฬ‚ + 1๐‘— ฬ‚ + 1๐‘˜ ฬ‚ & ๐‘ โƒ— = โ€“3๐‘– ฬ‚ โ€“ 3๐‘— ฬ‚ โ€“ 3๐‘˜ ฬ‚ Here, a โƒ— & b โƒ— are collinear as direction ratios are in proportion. But, a โƒ— and ๐‘ โƒ— have opposite direction โˆด (D) is not always true So, (B), (C), (D) are incorrect

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo