Last updated at Dec. 16, 2024 by Teachoo
Ex 10.2, 18 In triangle ABC (Fig 10.18),which of the following is not true (A) (π΄π΅) β + (π΅πΆ) β + (πΆπ΄) β= 0 β (B) (π΄π΅) β + (π΅πΆ) β β (π΄πΆ) β= 0 β (C) (π΄π΅) β + (π΅πΆ) β β (πΆπ΄) β= 0 β (D) (π΄π΅) β β (πΆπ΅) β + (πΆπ΄) β= 0 β In Ξ ABC, (π΄πΆ) β is the resultant of (π΄π΅) β & (π΅πΆ) β (π΄πΆ) β = (π΄π΅) β + (π΅πΆ) β (π΄π΅) β + (π΅πΆ) β = (π΄πΆ) β (π΄π΅) β + (π΅πΆ) β β (π΄πΆ) β = 0 β Checking part (A) (π¨π©) β + (π©πͺ) β + (πͺπ¨) β= π β From (1) (π΄π΅) β + (π΅πΆ) β β (π΄πΆ) β = 0 β (π΄π΅) β + (π΅πΆ) β β (β(πΆπ΄) β) = 0 β (π΄π΅) β + (π΅πΆ) β + (πΆπ΄) β = 0 β Hence, (A) is true. Checking part (B) (π¨π©) β + (π©πͺ) β β (π¨πͺ) β= π β From (1) (π΄π΅) β + (π΅πΆ) β β (π΄πΆ) β = 0 β Hence, (B) is true. Checking part (C) (π¨π©) β + (π©πͺ) β β (πͺπ¨) β= π β From (1) (π΄π΅) β + (π΅πΆ) β β (π΄πΆ) β = 0 β (π΄π΅) β + (π΅πΆ) β β (β(πΆπ΄) β) = 0 β (π΄π΅) β + (π΅πΆ) β + (πΆπ΄) β = 0 β Hence, (C) is not true. Checking part (D) (π¨π©) β β (πͺπ©) β + (πͺπ¨) β= π β From (1) (π΄π΅) β + (π΅πΆ) β β (π΄πΆ) β = 0 β (AB) β β (CB) β + (CA) β = 0 β Hence, (D) is true. Thus, (C) is the correct option
Ex 10.2
Ex 10.2, 2
Ex 10.2, 3 Important
Ex 10.2, 4
Ex 10.2, 5 Important
Ex 10.2, 6
Ex 10.2, 7 Important
Ex 10.2, 8
Ex 10.2, 9
Ex 10.2, 10 Important
Ex 10.2, 11 Important
Ex 10.2, 12
Ex 10.2, 13 Important
Ex 10.2, 14
Ex 10.2, 15 Important
Ex 10.2, 16
Ex 10.2, 17 Important
Ex 10.2, 18 (MCQ) Important You are here
Ex 10.2, 19 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo