Check sibling questions


Transcript

Ex 10.2, 17 Show that the points A, B and C with position vectors, ๐‘Ž โƒ— = 3๐‘– ฬ‚ โˆ’ 4 ๐‘— ฬ‚ โˆ’ 4๐‘˜ ฬ‚, ๐‘ โƒ— = 2๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ + ๐‘˜ ฬ‚ and ๐‘ โƒ— = ๐‘– ฬ‚ โˆ’ 3 ๐‘— ฬ‚ โˆ’ 5๐‘˜ ฬ‚ , respectively form the vertices of a right angled triangle. Position vectors of vertices A, B, C of triangle ABC are ๐‘Ž โƒ— = 3๐‘– ฬ‚ โˆ’ 4๐‘— ฬ‚ โˆ’ 4๐‘˜ ฬ‚, ๐‘ โƒ— = 2๐‘– ฬ‚ โˆ’ 1๐‘— ฬ‚ + 1๐‘˜ ฬ‚ ๐‘ โƒ— = 1๐‘– ฬ‚ โˆ’ 3๐‘— ฬ‚ โˆ’ 5๐‘˜ ฬ‚ We know that two vectors are perpendicular to each other, i.e. have an angle of 90ยฐ between them, if their scalar product is zero. So, if (CA) โƒ—. (AB) โƒ— = 0, then (CA) โƒ— โŠฅ (AB) โƒ— & โˆ  CAB = 90ยฐ Now, (AB) โƒ— = ๐‘ โƒ— โˆ’ ๐‘Ž โƒ— = (2i ฬ‚ โˆ’ 1j ฬ‚ + 1k ฬ‚) โˆ’ (3i ฬ‚ โˆ’ 4j ฬ‚ โˆ’ 4k ฬ‚) = (2 โˆ’ 3) i ฬ‚ + (โˆ’1 + 4) j ฬ‚ + (1 + 4) k ฬ‚ = โ€“1i ฬ‚ + 3j ฬ‚ + 5k ฬ‚ (BC) โƒ— = ๐‘ โƒ— โˆ’ ๐‘ โƒ— = (1i ฬ‚ โˆ’ 3j ฬ‚ โˆ’ 5k ฬ‚) โˆ’ (2i ฬ‚ โˆ’ 1j ฬ‚ + 1k ฬ‚) = (1 โˆ’ 2) i ฬ‚ + (โˆ’3 + 1) j ฬ‚ + (โˆ’5 โˆ’ 1) k ฬ‚ = โˆ’1i ฬ‚ โˆ’ 2j ฬ‚ โˆ’ 6k ฬ‚ (CA) โƒ— = ๐‘Ž โƒ— โˆ’ ๐‘ โƒ— = (3i ฬ‚ โˆ’ 4j ฬ‚ โˆ’ 4k ฬ‚) โˆ’ (1i ฬ‚ โˆ’ 3j ฬ‚ โˆ’ 5k ฬ‚) = (3 โˆ’ 1) i ฬ‚ + (โˆ’4 + 3) j ฬ‚ + (โˆ’4 + 5) k ฬ‚ = 2i ฬ‚ โˆ’ 1j ฬ‚ + 1k ฬ‚ Now, (๐€๐) โƒ— . (๐‚๐€) โƒ— = (โ€“1i ฬ‚ + 3j ฬ‚ + 5k ฬ‚) . (2i ฬ‚ โˆ’ 1j ฬ‚ + 1k ฬ‚) = (โˆ’1 ร— 2) + (3 ร— โˆ’1) + (5 ร— 1) = (โˆ’2) + (โˆ’3) + 5 = โˆ’5 + 5 = 0 So, (AB) โƒ—.(CA) โƒ— = 0 Thus, (AB) โƒ— and (CA) โƒ— are perpendicular to each other. Hence, ABC is a right angled triangle.

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo