Last updated at Dec. 16, 2024 by Teachoo
Ex 10.2, 17 Show that the points A, B and C with position vectors, ๐ โ = 3๐ ฬ โ 4 ๐ ฬ โ 4๐ ฬ, ๐ โ = 2๐ ฬ โ ๐ ฬ + ๐ ฬ and ๐ โ = ๐ ฬ โ 3 ๐ ฬ โ 5๐ ฬ , respectively form the vertices of a right angled triangle. Position vectors of vertices A, B, C of triangle ABC are ๐ โ = 3๐ ฬ โ 4๐ ฬ โ 4๐ ฬ, ๐ โ = 2๐ ฬ โ 1๐ ฬ + 1๐ ฬ ๐ โ = 1๐ ฬ โ 3๐ ฬ โ 5๐ ฬ We know that two vectors are perpendicular to each other, i.e. have an angle of 90ยฐ between them, if their scalar product is zero. So, if (CA) โ. (AB) โ = 0, then (CA) โ โฅ (AB) โ & โ CAB = 90ยฐ Now, (AB) โ = ๐ โ โ ๐ โ = (2i ฬ โ 1j ฬ + 1k ฬ) โ (3i ฬ โ 4j ฬ โ 4k ฬ) = (2 โ 3) i ฬ + (โ1 + 4) j ฬ + (1 + 4) k ฬ = โ1i ฬ + 3j ฬ + 5k ฬ (BC) โ = ๐ โ โ ๐ โ = (1i ฬ โ 3j ฬ โ 5k ฬ) โ (2i ฬ โ 1j ฬ + 1k ฬ) = (1 โ 2) i ฬ + (โ3 + 1) j ฬ + (โ5 โ 1) k ฬ = โ1i ฬ โ 2j ฬ โ 6k ฬ (CA) โ = ๐ โ โ ๐ โ = (3i ฬ โ 4j ฬ โ 4k ฬ) โ (1i ฬ โ 3j ฬ โ 5k ฬ) = (3 โ 1) i ฬ + (โ4 + 3) j ฬ + (โ4 + 5) k ฬ = 2i ฬ โ 1j ฬ + 1k ฬ Now, (๐๐) โ . (๐๐) โ = (โ1i ฬ + 3j ฬ + 5k ฬ) . (2i ฬ โ 1j ฬ + 1k ฬ) = (โ1 ร 2) + (3 ร โ1) + (5 ร 1) = (โ2) + (โ3) + 5 = โ5 + 5 = 0 So, (AB) โ.(CA) โ = 0 Thus, (AB) โ and (CA) โ are perpendicular to each other. Hence, ABC is a right angled triangle.
Ex 10.2
Ex 10.2, 2
Ex 10.2, 3 Important
Ex 10.2, 4
Ex 10.2, 5 Important
Ex 10.2, 6
Ex 10.2, 7 Important
Ex 10.2, 8
Ex 10.2, 9
Ex 10.2, 10 Important
Ex 10.2, 11 Important
Ex 10.2, 12
Ex 10.2, 13 Important
Ex 10.2, 14
Ex 10.2, 15 Important
Ex 10.2, 16
Ex 10.2, 17 Important You are here
Ex 10.2, 18 (MCQ) Important
Ex 10.2, 19 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo