Check sibling questions


Transcript

Ex 10.2, 16 Find the position vector of the mid point of the vector joining the points P(2, 3, 4) and Q(4, 1, –2). P(2, 3, 4) , Q(4, 1, βˆ’2) Let the midpoint of PQ be R. Position vector of P = (2 βˆ’ 0) 𝑖 Μ‚ + (3 βˆ’ 0) 𝑗 Μ‚ + (4 βˆ’ 0) π‘˜ Μ‚ (𝑂𝑃) βƒ— = 2𝑖 Μ‚ + 3𝑗 Μ‚ + 4π‘˜ Μ‚ Position vector of Q = (4 βˆ’ 0) 𝑖 Μ‚ + (1 βˆ’ 0) 𝑗 Μ‚ + (βˆ’2 βˆ’ 0) π‘˜ Μ‚ (𝑂𝑄) βƒ— = 4𝑖 Μ‚ + 1𝑗 Μ‚ βˆ’ 2π‘˜ Μ‚ Position vector of R = ((𝑢𝑸) βƒ— + (𝑢𝑷) βƒ—)/𝟐 (𝑂𝑅) βƒ— = ((4𝑖 Μ‚ + 1𝑗 Μ‚ βˆ’ 2π‘˜ Μ‚ ) + (2𝑖 Μ‚ + 3𝑗 Μ‚ + 4π‘˜ Μ‚))/2 (𝑂𝑅) βƒ— = ((4 + 2) 𝑖 Μ‚ + (1 + 3) 𝑗 Μ‚ + (βˆ’2 + 4)π‘˜ Μ‚)/2 (𝑂𝑅) βƒ— = (6𝑖 Μ‚ + 4𝑗 Μ‚ + 2π‘˜ Μ‚)/2 (𝑂𝑅) βƒ— = (2(3𝑖 Μ‚ + 2𝑗 Μ‚ + π‘˜ Μ‚))/2 (𝑂𝑅) βƒ— = πŸ‘π’Š Μ‚+πŸπ’‹ Μ‚+π’Œ Μ‚ Therefore, position vector of midpoint of PQ is 3𝑖 Μ‚ + 2𝑗 Μ‚ + π‘˜ Μ‚

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo