Check sibling questions


Transcript

Ex 10.2, 11 (Method 1) Show that the vectors 2๐‘– ฬ‚ โˆ’ 3๐‘— ฬ‚ + 4๐‘˜ ฬ‚ and โˆ’ 4๐‘– ฬ‚ + 6 ๐‘— ฬ‚ โˆ’ 8๐‘˜ ฬ‚ are collinear.Two vectors are collinear if they are parallel to the same line. Let ๐‘Ž โƒ— = 2๐‘– ฬ‚ โˆ’ 3๐‘— ฬ‚ + 4๐‘˜ ฬ‚ and ๐‘ โƒ— = โ€“4๐‘– ฬ‚ + 6๐‘— ฬ‚ โ€“ 8๐‘˜ ฬ‚ Magnitude of ๐‘Ž โƒ— = โˆš(22+(โˆ’3)2+42) |๐‘Ž โƒ— | = โˆš(4+9+16) = โˆš29 Directions cosines of ๐‘Ž โƒ— = (2/โˆš29,(โˆ’3)/โˆš29,4/โˆš29) Magnitude of ๐‘ โƒ— =โˆš((โˆ’4)2+62+(โˆ’8)2) |๐‘ โƒ— | = โˆš(16+36+64) = โˆš116 = 2โˆš29 Directions cosines of ๐‘ โƒ— = ((โˆ’4)/(2โˆš29),6/(2โˆš29),(โˆ’8)/(2โˆš29)) = ((โˆ’2)/โˆš29,3/โˆš29,(โˆ’4)/โˆš29) = โˆ’1(2/โˆš29,(โˆ’3)/โˆš29,4/โˆš29) Hence, Direction cosines of ๐’‚ โƒ— = (โˆ’1) ร— Direction cosines of ๐’ƒ โƒ— โˆด They have opposite directions Since ๐‘Ž โƒ— and ๐‘ โƒ— are parallel to the same line ๐‘š โƒ—, they are collinear. Hence proved Ex 10.2, 11 (Method 2) Show that the vectors 2๐‘– ฬ‚ โˆ’ 3๐‘— ฬ‚ + 4๐‘˜ ฬ‚ and โˆ’ 4๐‘– ฬ‚ + 6 ๐‘— ฬ‚ โˆ’ 8๐‘˜ ฬ‚ are collinear.๐‘Ž โƒ— = 2๐‘– ฬ‚ โˆ’ 3๐‘— ฬ‚ + 4๐‘˜ ฬ‚ ๐‘ โƒ— = โ€“4๐‘– ฬ‚ + 6๐‘— ฬ‚ โ€“ 8๐‘˜ ฬ‚ Two vectors are collinear if their directions ratios are proportional ๐‘Ž_1/๐‘_1 = ๐‘Ž_2/๐‘_2 = ๐‘_3/๐‘_3 = ๐œ† 2/(โˆ’4) = (โˆ’3)/6 = 4/(โˆ’8) = (โˆ’1)/2 Since, directions ratios are proportional Hence, ๐‘Ž โƒ— & ๐‘ โƒ— are collinear

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo